Connecticut's 2019 Program Savings Document

14TH EDITION, FILED ON NOVEMBER 1, 2018

CONTRIBUTORS

Eversource Energy PO Box 270 Hartford, CT 06141 www.eversource.com 877-WISE-USE UIL Holdings Corporation 180 Marsh Hill Road Orange, CT 06477 www.uinet.com 877-WISE-USE

The following individuals (listed alphabetically) are the primary authors of the 2019 Program Savings Document.

Vinay Ananthachar, P.E., Green Banyan Consulting
Joseph Bebrin, UIL Holdings Corporation
Miles Ingram, Eversource Energy
Michael Sherber P.E., Labella
Richard Oswald, UIL Holdings Corporation
Ghani Ramdani, CEM, Eversource Energy
Viraj Sheth, P.E., UIL Holdings Corporation
Joseph Swift, Eversource Energy

In addition, the many other contributors from the Companies that provided input, technical assistance, and review of the Program Savings Document must be acknowledged. This list includes, but is not limited to: Program Administrators, Managers, Information Technology staff, and other project staff.

Table of Contents

CONTRIBUTORS	I
SECTION ONE: INTRODUCTION	1
1.1 PURPOSE	1
1.2 FORWARD CAPACITY MARKET	1
	•
1.3 ORGANIZATION	2
1.4 BACKGROUND	3
1.5 PROGRAM SAVINGS	
Types of Savings	
Peak Savings	
Non-Energy Impacts	
Savings Adjustment Factors	
Common Energy Conversions	
	,
1.6 SAVINGS CALCULATIONS	7
1.7 GLOSSARY	8
SECTION TWO: C&I LOST OPPORTUNITY	17
	•••••••••••••••••••••••••••••••••••••••
2.1 LIGHTING	
2.1 LIGHTING 2.1.1 Standard Lighting	17
	17 17
2.1.1 Standard Lighting 2.1.2. Upstream Lighting	17
2.1.1 Standard Lighting2.1.2. Upstream Lighting2.2 HVAC & WATER HEATING	17
 2.1.1 Standard Lighting 2.1.2. Upstream Lighting 2.2 HVAC & WATER HEATING 2.2.1 Chillers 	
 2.1.1 Standard Lighting 2.1.2. Upstream Lighting 2.2 HVAC & WATER HEATING 2.2.1 Chillers 2.2.2 Unitary A/C and Heat Pumps 	
 2.1.1 Standard Lighting 2.1.2. Upstream Lighting 2.2 HVAC & WATER HEATING 2.2.1 Chillers 2.2.2 Unitary A/C and Heat Pumps 2.2.3 Water and Ground Sourced Heat Pump 	
 2.1.1 Standard Lighting 2.1.2. Upstream Lighting 2.2 HVAC & WATER HEATING 2.2.1 Chillers 2.2.2 Unitary A/C and Heat Pumps 2.2.3 Water and Ground Sourced Heat Pump 2.2.4 Dual Enthalpy Controls 	
 2.1.1 Standard Lighting 2.1.2. Upstream Lighting 2.2 HVAC & WATER HEATING 2.2.1 Chillers 2.2.2 Unitary A/C and Heat Pumps 2.2.3 Water and Ground Sourced Heat Pump 	
 2.1.1 Standard Lighting 2.1.2. Upstream Lighting 2.2 HVAC & WATER HEATING 2.2.1 Chillers 2.2.2 Unitary A/C and Heat Pumps 2.2.3 Water and Ground Sourced Heat Pump 2.2.4 Dual Enthalpy Controls 2.2.5 Demand Control Ventilation 	17 17 17 27 30 30 30 35 40 44 44 46 47
 2.1.1 Standard Lighting 2.1.2. Upstream Lighting 2.2 HVAC & WATER HEATING 2.2.1 Chillers 2.2.2 Unitary A/C and Heat Pumps 2.2.3 Water and Ground Sourced Heat Pump 2.2.4 Dual Enthalpy Controls 2.2.5 Demand Control Ventilation 2.2.6 Natural Gas Fired Boiler and Furnace 	17 17 17 27 30 30 30 35 40 44 44 46 47 50
 2.1.1 Standard Lighting 2.1.2. Upstream Lighting 2.2 HVAC & WATER HEATING 2.2.1 Chillers 2.2.2 Unitary A/C and Heat Pumps 2.2.3 Water and Ground Sourced Heat Pump 2.2.4 Dual Enthalpy Controls 2.2.5 Demand Control Ventilation 2.2.6 Natural Gas Fired Boiler and Furnace 2.2.7 Natural Gas Radiant Heaters 2.2.8 Natural Gas-Fired Domestic Hot Water Heaters 	17 17 17 27 30 30 30 35 40 40 44 46 46 47 50 52
 2.1.1 Standard Lighting	17 17 17 27 30 30 30 35 40 44 44 46 47 50 52 57
 2.1.1 Standard Lighting	17 17 27 30 30 35 40 44 44 46 47 50 52 52 57
 2.1.1 Standard Lighting	17 17 27 30 30 30 35 40 40 44 46 47 50 52 52 57 57 57

	61
2.6.1 Lean Manufacturing	
2.6.2 Commercial Kitchen Equipment	
2.6.3 Lost Opportunity Custom	
2.6.4 Commercial Clothes Washers	70
2.7 ENVELOPE	
2.7.1 Cool Roof	76
SECTION THREE: C&I RETROFIT	81
3.1 LIGHTING	
3.1.1 Standard Lighting	
3.1.2 Refrigerator LED	
3.2 HVAC & WATER HEATING	
3.2.1 Water-Saving Measures	
3.2.2 Pipe Insulation	
3.2.3 Duct Sealing	
3.2.4 Duct Insulation	
3.2.5 Setback Thermostats	
3.2.7 Steam Trap Replacement (Grashof Method)	
3.2.8 Blower Door Test (Small C&I)	
3.2.9 Add Speed Control to Rooftop Unit Fan	
3.2.10 Commercial Kitchen Hood Controls	
3.3 OTHER	
3.3.1 Custom Measure	
3.3.1 Custom Measure	
3.4 REFRIGERATION	117 117
3.4 REFRIGERATION 3.4.1 Cooler Night Covers	117
3.4 REFRIGERATION 3.4.1 Cooler Night Covers 3.4.2 Evaporator Fan Controls	
 3.4 REFRIGERATION	
 3.4 REFRIGERATION	
 3.4 REFRIGERATION	
 3.4 REFRIGERATION	
3.4 REFRIGERATION 3.4.1 Cooler Night Covers 3.4.2 Evaporator Fan Controls 3.4.3 Evaporator Fans Motor Replacement 3.4.4 Door Heater Controls 3.4.5 Vending Machine Controls 3.4.6 Add Doors to Open Refrigerated Display Cases SECTION FOUR: RESIDENTIAL	
 3.4 REFRIGERATION	117 117 119 123 126 128 132 132 135 135 135
3.4 REFRIGERATION	
 3.4 REFRIGERATION	

4.2.13 PACKAGE TERMINAL HEAT PUMP	
4.2.14 QUALITY INSTALLATION VERIFICATION	176
4.2.15 DUCT INSULATION	
4.2.17 BOILER	
4.2.18 FURNACE	
4.2.19 BOILER RESET CONTROLS	
4.2.20 ECM CIRCULATING PUMP	201
4.2.21 WI-FI THERMOSTAT	203
4.2.22 CLEAN TUNE AND TEST	
4.3.7 RESIDENTIAL APPLIANCES	209
4.3.14 ELECTRONICS	212
4.4 ENVELOPE	215
4.4.1 REM SAVINGS	
4.4.4 Infiltration Reduction Testing (Blower Door Test)	
4.4.8 WINDOW REPLACEMENT	
4.4.9 THERMAL ENCLOSURE	
4.4.10 INSTALL STORM WINDOW	
4.4.11 INSULATE ATTIC OPENINGS	-
4.4.13 INFILTRATION REDUCTION (Prescriptive)	
4.4.13 WALL INSULATION	
4.4.15 CEILING INSULATION	
4.4.16 FLOOR INSULATION	
4.5 WATER HEATING	
4.5.3 SHOWERHEAD	268
4.5.4 FAUCET AERATOR	273
4.5.7 FOSSIL FUEL WATER HEATER	
4.5.8 HEAT PUMP WATER HEATER	281
4.5.9 PIPE INSULATION	284
4.5.10 SOLAR WATER HEATER	290
4.6 OTHER	292
4.6.1 RESIDENTIAL CUSTOM	
4.6.2 BEHAVIORAL CHANGE	
APPENDIX ONE: PEAK FACTORS	297
Coincidence Factors for ISO-NE Seasonal Peak Demand Reductions	
	231
APPENDIX TWO: LOAD SHAPES	201
Load Shapes by End Use and Sector	301
APPENDIX THREE: REALIZATION RATES	202
Commercial & Industrial Electric Realization Rates	
Commercial & Industrial Natural Gas Realization Rates	
Commonial 9 Inductival Natural Con Dealization Datas	005
Commercial & Industrial Natural Gas Realization Rates	

APPENDIX FOUR: LIFETIMES	312
Commercial and Industrial Lifetimes	
Residential Lifetimes	318
APPENDIX FIVE: HOURS OF USE	323
Commercial and Industrial Hours of Use and EFLH	
APPENDIX SIX: NON-ENERGY IMPACTS	326
Residential Non-Energy Impacts	
Abbreviations/Acronyms	
Subscripts	

This page intentionally blank.

SECTION ONE: INTRODUCTION

1.1 PURPOSE

This Program Savings Documentation ("PSD") manual provides detailed, comprehensive documentation of resource and non-resource savings corresponding to the Energy Efficiency Fund programs and individual Conservation and Load Management ("C&LM") program technologies. Savings calculations detailed in the PSD manual are used by Eversource Energy of Connecticut ("Eversource"), The United Illuminating Company ("United Illuminating"), Connecticut Natural Gas Corporation ("CNG"), and The Southern Connecticut Gas Company ("SCG"), hereinafter referred to as the ("Companies"). The PSD manual fulfills the former Connecticut Department of Public Utility Control's ("DPUC") requirement for the Companies to develop a Technical Reference Manual.¹

The Companies have worked together during the past several years to develop common engineering assumptions and impact factors for all types of energy-efficient measures. The PSD manual is a compilation of these continued efforts. In addition, the results of program impact evaluations have been incorporated by the Companies. Thus, all C&LM savings claims are traceable through cross-references to the current PSD manual. The PSD manual is reviewed annually, and is updated to reflect changes in technologies, baselines, measured savings, evaluation recommendations, and impact factors. This document is the fourteenth update to the PSD manual ("2019 PSD").

The C&LM savings calculations in the 2019 PSD manual represent typical energy-efficient measures and the prescriptive calculations used for those measures. In some cases, projects are more comprehensive and prescriptive measure calculations are not appropriate. To accurately calculate the savings related to these types of projects, more detailed spreadsheets or computer simulation models must be used. Third-party engineering consultants may be contracted to run simulations and create these spreadsheets; all simulations and spreadsheets are reviewed for reasonableness.

1.2 FORWARD CAPACITY MARKET

In June 2006, the Federal Energy Regulatory Commission ("FERC") approved a settlement that established a redesigned wholesale electric capacity market in New England intended to encourage the maintenance of current power plants and construction of new generation facilities. The settlement established a Forward Capacity Market ("FCM"). ISO New England, Inc. ("ISO-NE"), the operator of the region's bulk power system and wholesale electricity markets, was made responsible for projecting the energy needs of the New England region three years in advance and then holding an annual auction to purchase power resources to satisfy the region's future needs.

In response to ISO-NE's solicitation for proposals for the Forward Capacity Auction ("FCA"), Eversource and United Illuminating submitted new demand side resource projects, including energy efficiency that will decrease electric

¹ Docket No. 03-11-01PH02, DPUC Review of CL&P and UI Conservation and Load Management Plan for Year 2004 – Phase II, July 28, 2004.

demand. Per ISO-NE's requirements, detailed Project Qualification Packages that include Measurement and Verification ("M&V") Plans must be submitted. The purpose of ISO-NE's required M&V activity is to verify that energy efficiency measures promoted by the programs were actually installed, are still in place, and functioning as intended, and to validate the reduction in electrical demand compared to some baseline pattern of use. The 2019 PSD manual provides the basis of any demand reduction value calculations submitted by Eversource and United Illuminating in the FCM.

1.3 ORGANIZATION

C&LM measures in the 2019 PSD manual are grouped by primary sector and reflect how programs and measures are organized within C&LM. Commercial and industrial ("C&I") measures are also categorized as either "Lost Opportunity" or "Retrofit." The main sections of the 2019 PSD manual are as follows:

- Section 1: Introduction;
- Section 2: Commercial & Industrial Lost Opportunity;
- Section 3: Commercial & Industrial Retrofit;
- Section 4: Residential, including Limited-Income; and
- Appendices.

Each individual measure is divided into several or all of the following subsections:

- Description of Measure. Describes the scope and basics of the measure;
- Savings Methodology. Lists the methods, reasoning, and tools used to perform calculations;
- Inputs. Captures required project or measure data used in the calculations;
- Nomenclature. Captures variables, constants, and other terminology used in the measure;
- Retrofit Gross Energy Savings Electric. Describes the calculations used to determine electric gross energy savings;
- Retrofit Gross Energy Savings Fossil Fuel. Describes the calculations used to determine fossil fuel gross energy savings;
- Retrofit Gross Seasonal Peak Demand Savings Electric (winter and summer). Describes the calculations used to determine gross peak electric demand savings;
- Retrofit Gross Peak Day Savings Natural Gas. Describes the calculations used to determine gross peak gas demand savings;
- Lost Opportunity Gross Energy Savings Electric. Describes the calculations used to determine gross lost opportunity electric savings;
- Lost Opportunity Gross Energy Savings Fossil Fuel. Describes the calculations used to determine gross lost opportunity fossil fuel savings;
- Lost Opportunity Gross Seasonal Peak Demand Savings Electric (winter and summer). Describes the calculations used to determine gross lost opportunity seasonal peak electric demand savings;
- Lost Opportunity Gross Peak Day Savings Natural Gas. Describes the calculations used to determine gross peak natural gas lost opportunity savings;

- Non-Energy Impacts. Describes any impacts not directly associated with energy savings;
- Changes from Last Version. If there are any changes from the previous version, they are described in this section;
- References. Sources used to construct the measure are listed here; and
- Notes. Relevant comments and information are presented in this section.

Subsections that do not apply to a particular measure are not included.

1.4 BACKGROUND

In 1999, the State Legislature created the Energy Conservation Management Board, now called the Energy Efficiency Board ("EEB"), to guide and assist Connecticut's electric and natural gas distribution companies in the development and implementation of cost-effective energy conservation programs and market transformation initiatives.² The Connecticut Energy Efficiency Fund ("Energy Efficiency Fund") created by this legislation provides the financial support for EEB-guided programs and initiatives. The Department of Energy and Environmental Protection ("DEEP") is responsible for final approval of all Energy Efficiency Fund programs.

Energy Efficiency Fund programs are administrated by the Companies. These programs are designed to realize the Energy Efficiency Fund's three primary objectives:

- 1. Advance the Efficient Use of Energy: Energy Efficiency Fund programs are critical in reducing overall energy consumption and reducing load during periods of high demand. They help mitigate potential electricity shortages and reduce stress on transmission and distribution lines in the state.
- 2. Reduce Air Pollution and Negative Environmental Impacts: Energy Efficiency Fund programs produce environmental benefits by slowing the electricity demand growth rate, thereby avoiding emissions that would otherwise be produced by increased power generation activities. The US Environmental Protection Agency ("EPA") regulates "criteria" air pollutants under the Clean Air Act's National Ambient Air Quality Standards ("NAAQS"). The EPA calls them criteria air pollutants because the agency regulates them by developing human health-based and/or environmentally-based criteria (science-based guidelines) for setting permissible levels.

Energy Efficiency Fund programs have significantly reduced two NAAQS criteria pollutants emitted in the process of generating electricity: sulfur dioxide and nitrogen dioxide. Carbon dioxide and other "greenhouse gases," such as methane, are also emitted during the process. Greenhouse gases have been linked to global warming and climate change. Energy Efficiency Fund programs have helped to reduce carbon dioxide emissions by reducing electrical demand, and consequently the need for additional generation, through energy efficiency and conservation. These programs also produce environmental benefits by reducing the consumption of natural gas and fuel oil. With assistance from the EEB, the

² Conn. Gen. Stat. § 16-245m.

Companies have developed Energy Efficiency Fund programs that support the state's environmental initiatives to reduce these air pollutants, as well as fine particulate and ozone emissions.

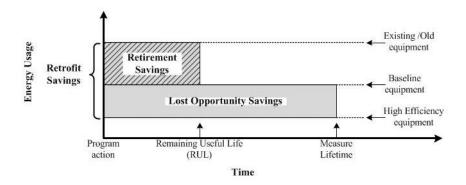
3. Promote Economic Development and Energy Security: Energy Efficiency Fund programs generate considerable benefits for Connecticut customers. These programs are tailored to meet the particular needs of all customers, thereby benefiting all state residents and businesses. Energy efficiency measures assist residential customers in reducing their energy costs. Other groups that benefit from energy efficiency programs include educational institutions, non-profit organizations, municipalities, and businesses. By reducing operating costs and enhancing productivity, Connecticut businesses remain competitive in the dynamic global economy.

Information regarding Energy Efficiency Fund programs is available at the following websites:

- Connecticut's statewide energy information portal: www.energizect.com
- Eversource: <u>www.eversource.com</u>
- United Illuminating: <u>www.uinet.com</u>
- CNG: <u>www.cngcorp.com</u>
- SCG: <u>www.soconngas.com</u>
- EEB: <u>www.energizect.com/connecticut-energy-efficiency-board</u>

1.5 PROGRAM SAVINGS

Consistent with Public Act 13-298, Public Act 11-80 § 33, and Connecticut General Statute § 16-245m(d)(4), the EEB Evaluation Road Map Process provides a mechanism to conduct independent third-party evaluation studies to assess program savings. Through this process, impact evaluations are conducted to evaluate savings for programs or measures that are delivered through C&LM programs. The results of these evaluations are incorporated into the 2019 PSD manual through changes to savings algorithms and/or realization rates which are used to adjust savings.


The savings results presented in the 2019 PSD manual (both electric and non-electric) are assumed to be the savings that would be measured at the point of use. In other words, electric savings, both energy (kWh) and demand (kW), and natural gas savings (ccf), are savings that would occur at the customer's meter. Additionally, the annual electric savings from measures has a specified load shape (i.e., the time of day and seasonal patterns at which savings occur). **See Appendix Two for load shapes for various end-use savings.** Load shapes are used to assign the proper value of energy savings resulting from the implementation of C&LM measures to the corresponding time of day when those savings are realized.

Types of Savings

Energy efficiency measures are generally limited to two types:

- **Retirement.** Where less efficient measures are replaced before the end of their useful life with energyefficient measures; and
- Lost Opportunity. Where new measures are installed that are more efficient than a baseline or standard.

Many energy efficiency measures consist of both Retirement Savings and Lost Opportunity Savings. This is illustrated by Chart 1-A.

Chart 1-A: Retrofit, Retirement & Lost Opportunity Savings

Some measures may utilize a two-part lifetime savings calculation. For example, in an "Early Retirement" case, where the existing unit (e.g., a unit using lower efficiency, out-of-date technology) would have been operating until failure and early retirement is stimulated by the program measure; Retirement Savings may be claimed between the existing unit to the standard baseline unit (driven by the level of efficiency most standard units achieve) for the retirement measure life. The residential retirement lifetime refers to how much longer the existing unit would have operated absent the influence of an Energy Efficiency Fund program. For example, a working heating system may be retired prior the end of its useful life as a result of program intervention.

Lost Opportunity Savings apply to the portion of savings resulting from choosing a high-efficiency product to replace the retired product over a standard efficiency (baseline) product available on the market. If the retired heating system in the above example were replaced with a high-efficiency model (versus a standard baseline model) generating additional savings, it would result in Lost Opportunity Savings.

If the retirement life is much greater than zero, the Retirement and Lost Opportunity Savings are combined to generate total Retrofit Savings. When the retirement life is approximately zero, savings are reduced to Lost Opportunity Savings only. Retirement Savings are acknowledged to exist; however, they are ignored because they are assumed to be short lived.

Peak Savings

The values for electric demand savings (both winter and summer) in the 2019 PSD manual are given based on the following definition:

- A "Seasonal Peak" reduction is based on the average peak reduction for a measure during the ISO-NE definition for a Seasonal Peak Demand Resource; when the real-time system hourly load is equal to or greater than 90 percent of the most recent "50/50" system peak load forecast for the applicable Summer or Winter Season;
- The "Summer Season" is defined as non-holiday weekdays during the months of June, July, and August; and
- The "Winter Season" is defined as non-holiday weekdays during December and January.

Typically, seasonal peaks are weather driven and occur in the mid to late afternoon on Summer Season weekdays, or for the Winter Season, in the early evening.

Electric peak demand savings is calculated on a measure-by-measure basis. Coincidence factors are multiplied by the connected load savings of the measure in order to obtain the peak demand savings. See Appendix One for a list of default coincidence factors that are used to calculate the peak demand savings.

For natural gas measures, the peak savings represents the estimated savings coincident with the theoretical maximum system usage in a 24-hour period. Since the natural gas peak is driven by cold weather, the peak savings for heating-related measures is estimated based on degree-day data and the estimated coldest 24-hour degree period. For measures that save natural gas continuously at an equal rate throughout the year, the peak savings is assumed to be the annual savings divided by 365. *The calculations for peak natural gas savings are found in Appendix One*.

Non-Energy Impacts

In addition to direct electric and natural gas benefits, some measures have other non-energy impacts. Where appropriate, these are defined in the 2019 PSD manual. Non-energy impacts ("NEIs") may be included in the Total Resource Cost Test and include resource impacts (e.g., water) and non-resource impacts (e.g., operation and maintenance ("O&M"), comfort, etc.).

Savings Adjustment Factors

The savings for the C&LM measures defined in the 2019 PSD manual are Gross Savings. Impact factors are applied to the Gross Savings to calculate the Net Savings (final). Gross Savings estimates (based on known technical parameters) represent the first step in calculating energy savings. Gross Savings calculations are based on engineering algorithms or modeling that take into account technically important factors such as the hours of use, differences in efficiency, differences in power consumption, etc. Gross Savings is an estimate of expected customer savings; however, it does not include program attribution factors such as free-ridership.

When calculating the total impact of energy-saving measures, there are also some other factors beyond the engineering parameters that need to be considered, such as installation rates, free-ridership, and spillover. The equation for Net Savings is as follows:

Net Savings = Gross Savings x Realization Rate x Installation Rate x (1 + Spillover – Free Ridership)

In some cases, evaluation work may uncover differences between calculated savings and actual (metered) savings that may not be completely attributable to the impact factors above. These differences may arise when the savings calculations do not accurately capture the real savings attributable to a measure. In addition to the impact factors above, savings differences can happen for a variety of reasons such as non-standard usage patterns or operating conditions. In these cases, overall realization rates may be used in addition to or instead of the aforementioned impact factors to align calculated savings with observed savings values.

For instance, a billing analysis may show observed savings from a refrigerator removal program to be 60 percent of the Gross (calculated) Savings. In this case, the differences may be attributable to a combination of factors, including refrigerators that are not being used, units being improperly used (e.g., the refrigerator door left open for long periods of time), and units that exhibit lower energy use because they are operating in cooler basement environments. In such a case, a 60 percent realization rate would be applied to the Gross (calculated) Energy Savings to correct the calculation.

Realization rates can be applied to specific measures or across programs depending on their source. Since C&I programs typically offer a wide range of diverse measures, defining specific impact factors for C&I programs can be difficult, and therefore program-specific realization rates are usually limited to C&I programs. Appendix Three contains a list of program specific realization rates. These 2019 PSD manual rates have been updated based on recently completed studies.

Common Energy Conversions

Energy conversions used in the 2019 PSD manual that convert energy to a specific fuel type are summarized in Table 1-A.

To Obtain:	Multiply:	By:
Btu	MMBtu	1,000,000
ccf of Natural Gas	MMBtu	1/0.1029
Gallon of Oil (No. 2)	MMBtu	1/0.138690
Gallon of Propane	MMBtu	1/0.09133
kWh (electric)	MMBtu	1/0.003412
kWh (electric)	Btu	1/3412
Ton (air conditioning)	Btu/h	1/12000

Table 1-A: Energy Conversion Factors

1.6 SAVINGS CALCULATIONS

See the individual measure "Changes from Last Version" sections for details.

1.7 GLOSSARY

The glossary provides definitions of the energy conservation terms used in the 2019 PSD manual. Note that some of these terms may have alternative or multiple definitions some of which may be outside the context of the 2019 PSD manual. Only definitions pertaining to the 2019 PSD manual are included in the glossary.

Annual Fuel Utilization Factor ("AFUE"): The thermal efficiency measure of combustion equipment like furnaces and boilers. The AFUE differs from the true 'thermal efficiency' in that it is not a steady-state, peak measure of conversion efficiency, but instead attempts to represent the actual, season-long, average efficiency of that piece of equipment, including the operating transients. The method for determining the AFUE for equipment is based on ASHRAE standards.

ASHRAE: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., an international technical society in the fields of heating, ventilation, air conditioning, and refrigeration, known for writing the industry standards for testing and practice.

Baseline Efficiency: C&LM program savings are calculated from this efficiency value. It represents the value of efficiency of the equipment that would have been installed without any influence from the program. For Lost Opportunity measures, the baseline is determined by the applicable code or standard practice, whichever is more stringent.³ *Contrast compliance efficiency.*

Behavioral Conservation: Programs that encourage customer strategies to conserve energy through changes, modifications to standard practice, or changes or modifications to customer behavior.

Benefit-Cost Ratio ("BCR"): The efficiency programs determine cost-effectiveness using the Utility Cost Test (i.e., Electric System and the Natural Gas System), the Modified Utility Cost Test, or Total Resource Test. Energy efficiency efforts are cost-effective if the benefit-cost ratio is greater than or equal to 1.0. Currently, the Companies use the following three benefit-cost tests:

- The Utility Cost Test includes the value of utility specific benefits and program costs associated with those benefits. For example, the Utility Cost Test includes energy-avoided costs from electric and natural gas conservation measures and programs; and all program costs associated with acquiring those benefits. The Utility Cost Test does not include a participant's out-of-pocket costs, the costs or benefits associated with oil or propane savings, or any indirect or societal impacts, such as reductions in emissions or NEIs (e.g., water savings).
- 2. The Modified Utility Cost Test includes all benefits and costs included in the Utility Cost Test, with the addition of oil and propane avoided costs, and program costs associated with acquiring oil and propane

³ See Energy Efficiency Program Impact Evaluation Guide, SEE Action, Dec. 2012. ISO New England Manual for Measurement and Verification, Revision 6, Jun. 2014.

savings. The Modified Utility Cost Test currently applies only to residential programs that save oil or propane.

3. The Total Resource Cost Test includes all energy and non-energy benefits, such as water savings and emissions, and participant benefits such as maintenance, property value, and comfort improvements. In addition, the Total Resource Cost Test includes all costs associated with acquiring savings. This includes program costs and participant out-of-pocket costs.

Btu (British Thermal Unit): The amount of energy needed to heat one pound of water one degree Fahrenheit (from 39°F to 40°F).

Capacity: The maximum output of equipment at the standard conditions for the specific type of equipment. These are often given in units of Btu per hour or Tons.

ccf: 100 Cubic feet of gas; used to measure a quantity of natural gas.

Coefficient of Performance ("COP"): The efficiency rating of heating or cooling equipment. The COP is, at specific standard conditions, based on the specific type of equipment. Typically used for heat pumps in heating mode and natural gas-driven chillers.

Coincident Demand: Demand of a measure that occurs at the same time as some other peak (e.g., building peak, system peak, etc.). In the context of the 2018 PSD manual, coincident demand is a measure of demand savings that is coincident with ISO-NE's Seasonal Peak definition.

Coincidence Factor: Coincidence factors represent the fraction of connected load expected to occur at the same time as a particular system peak period on a diversified basis. Coincidence factors are normally expressed as a percent.

Compliance Efficiency: This efficiency value must be achieved in order to qualify for a C&LM program incentive. *Contrast baseline efficiency.*

Compliance Standard: The source or document that provides the compliance efficiency values, or a means to calculate these values. In many cases the compliance efficiency is based on standards from recognized programs such as ENERGY STAR.[®]

Connected Load: The maximum instantaneous power required by equipment, usually expressed as kW.

Cooling Degree Days ("CDD"): A measure of how hot a location is based on an average daily temperature over a base temperature of 65°F. *See also Degree Days*.

Degree Days: For any individual day, degree days indicate how far that day's average temperature departed from 65°F. Heating Degree Days measure heating energy demand and indicate how far the average temperature fell

below 65°F. Similarly, CDDs, which measure cooling energy demand, indicate how far the temperature averaged above 65°F.

Demand: The average electric power requirement (i.e., load) during a time period. Demand is measured in kW and the time period is usually one hour. If the time period is different than one hour (i.e., 15 minutes), the time period would be stated as "15-minute demand." Demand can refer to an individual customer's load or to the load of an entire electric system. *See Peak Demand*.

Demand Reduction, Demand Savings: The reduction in demand due to installation of an energy efficiency measure usually expressed as kW and measured at the customer's meter. *See discussion under Peak Demand Savings.*

Demand Resources: ISO-NE classifies demand reduction from energy efficiency and conservation measures into the following two categories:

- Active Resource: Demand reduction that is dispatched (i.e., demand response and emergency generation) that must respond to the electric system operator during shortage events. For example, resources entered into the ISO-NE Demand Response program are active resources because they are called upon for specific shortage events.
- **Passive Resource:** Demand reduction that is not dispatched (i.e., energy efficiency, plus a small amount of distributed generation) that reduces load during pre-defined hours and periods. Most C&LM measures are passive because they reduce load across a pre-defined operating period. For example, energy-efficient lighting will reduce load whenever lights are on throughout the year.

Diversity Factor: See Coincidence Factor.

Demand Reduction-Induced Price Effects ("DRIPE"): The reduction in prices in the wholesale energy and capacity markets because of the reduction in energy and demand resulting from conservation efforts.

Early Retirement: A measure is classified as early retirement when the participant replaces working equipment before the end of its useful life. In the case where the existing unit (using lower efficiency, out-of-date technology) would have been operating until failure and early retirement is stimulated by the program measure, savings may be claimed between the existing unit to the standard baseline unit (driven by the level of efficiency most standard units achieve) for the retirement measure life.

Electric System (benefit-cost ratio) Test: Defined as the present value of the avoided electric costs (i.e., energy, capacity, DRIPE, transmission, and distribution) divided by the program costs of achieving the savings. The Electric System Test is a tool used to screen electric measures and programs in Connecticut. Energy efficiency efforts are cost-effective if the benefit-cost ratio is greater than or equal to 1.0.

Emissions: The release or discharge of an air pollutant into the ambient air from any source. Please refer to Connecticut regulations Section 22a-174-1 for further clarification. Emissions reductions for fossil fuel conservation can be estimated based on US Energy Information Administration emissions data for fossil fuels.

Emissions reductions for electric conservation can be estimated using ISO-NE marginal emissions factors which are published annually.

Emittance: The ratio of the radiant heat flux emitted by a specimen to that emitted by a blackbody at the same temperature and under the same conditions.

End Use: Refers to a category of measures with similar load shapes. There are several different acceptable industry standards for defining end-use categories. Examples of end uses include: cooling, heating, lighting, refrigeration, water heating, motors, process, and others.

Energy Conservation: Energy or peak demand reduction resulting from changes in customer behavior(s) or program action(s).

Energy Efficiency: Reducing energy usage without a notable reduction in functional performance.

Energy Efficiency Ratio ("EER"): A performance rating of electrically-operated cooling equipment during peak periods (defined as a 95 degree F outside temperature, 80 degree F indoor temperature, and an indoor relative humidity of 50 percent). EER is the total cooling output in Btu divided by the total electrical energy input in watt hours during the same period.

Equivalent Full Load Hours ("EFLH"): The number of hours per year that the equipment would need to draw power at its connected (full) load rating in order to consume its estimated annual kWh. It is calculated as annual kWh/connected kW. EFLH is the same as operating hours for technologies that are either on or off, such as light bulbs. EFLH is less than operating hours for technologies that operate at part load for some of the time, such as air conditioners and motors.

Evaluation Studies: Studies that evaluate program impacts, free-ridership, and spillover, as well as processes, specific measures, and market assessments. Results of these studies are used by the Companies' program administrators to modify the programs and savings estimates.

Free-Rider: A C&LM program participant who would have installed or implemented an energy efficiency measure even in the absence of program marketing or incentives.

Free-Ridership: The fraction (usually expressed as a percent) of gross program savings that would have occurred in the absence of a C&LM program.

Gross Savings: A savings estimate, calculated from objective technical factors. Gross Savings is an estimate of what a participant is expected to achieve, given the conservation measures being installed. The Gross Savings do not include impact factors.

Heating Degree Days ("HDD"): A measure of how cold a location is below a base temperature of 65°F over a year. See also Degree Days.

Heating Seasonal Performance Factor ("HSPF"): A measure of a heat pump's energy efficiency over one heating season. It represents the total heating output of a heat pump (including supplementary electric heat) during the normal heating season (in Btu) compared to the total electricity consumed (in watt-hours) during the same period. The higher the rating, the more efficient the heat pump.

High Efficiency: High-efficiency equipment uses less energy than standard equipment.

Impact Evaluation: A study that assesses the energy, demand, and non-electric impacts associated with energy efficiency measures or programs.

Impact Factor: A number (usually expressed as a percent) used to adjust the gross savings in order to reflect the savings observed by an impact study.

Installation Rate: The fraction of the recorded products that are installed. For example, some screw-in LED bulbs are bought as spares and will not be installed until another one burns out.

Lighting Power Density ("LPD"): The amount of electrical power required for the installed lighting in a building space or in an entire building, expressed as watts per square foot.

Load Factor: The average fractional load at which the equipment runs. It is calculated as average load/connected load.

Load Shape: The time-of-use pattern of a customer's electrical energy consumption or measure. Load shapes are defined as follows based on ISO-NE definitions.

- Summer On-Peak: 7 am to 11 pm, weekdays, during the months of June through September, except ISO-NE holidays;
- Summer Off-Peak: All other hours during the months of June through September (includes weekends and holidays).;
- Winter On-Peak: 7 am to 11 pm, weekdays, during the months of October through May, except ISO-NE holidays; and
- Winter Off-Peak: All other hours during the months of October through May (includes weekends and holidays).

Because the value of avoided energy varies throughout the year, load shapes are used to allocate energy savings into specific time periods in order to better reflect its time-dependent value.

Lost Opportunity: Refers to the new installation of an enduring unit of equipment (in the case of new construction) or the replacement of an enduring unit of equipment at the end of its useful life. An enduring unit of equipment is one that would normally be maintained, not replaced, until the end of its life. *Contrast "Retrofit."*

Market Effect: A long-term change in the behavior of a market because of conservation and energy efficiency efforts. "Market effect savings" are the result of changes in market behaviors.

MMBtu: Millions of British Thermal Units.

Measure: A product (a piece of equipment) or a process that is designed to provide energy or demand savings. Measure can also refer to a service or a practice that provides savings.

Measure Cost: For new construction or measures that are installed at their natural time of replacement (replace upon burn-out), measure cost is defined as the incremental cost of upgrading to high-efficiency measures. For retrofit measures, the measure cost is defined as the full cost of the measure. Measure cost refers to the true cost of the measure regardless of whether an incentive was paid for that measure.

Measure Lifetimes: This is the average number of years (or hours) that a group of new high-efficiency equipment will continue to produce energy savings or the average number of years that a service or practice will provide savings. Lifetimes are generally based on experience or studies. For retrofit or early retirement measures, the measure lifetime may include a change in baseline over time, more accurately reflecting the lifetime energy savings.

Measure Type: Refers to a category of similar measures. There are several different acceptable industry standards for defining end-use categories. For the purpose of the 2019 PSD manual, primary end-use categories include: cooling, heating, lighting, motors, process, refrigeration, water heating, and other.

Natural Gas System (Benefit-Cost Ratio) Test: A ratio used to assess the cost-effectiveness of energy efficiency programs and measures on the natural gas system. The Natural Gas System Test is defined as the present value of the avoided natural gas costs divided by the program-related costs of achieving the savings. The Natural Gas System Test is the primary tool used to screen natural gas measures and programs in Connecticut. Energy efficiency programs and measures are cost-effective if the benefit-cost ratio is greater than or equal to 1.0.

Net Savings: The final value of savings that is attributable to a program or measure. Net savings differs from "Gross Savings" because it includes adjustments from impact factors, such as free-ridership or spillover. Net Savings is sometimes referred to as "Verified Savings" or "Final Savings."

Net-to-Gross: The ratio of net savings to the gross savings (for a measure or program). Net-to-gross is usually expressed as a percent. Net-to-gross ratios include elements of free-ridership and spillover.

Non-Electric Impacts: Quantifiable impacts (beyond electric savings) that are the result of the installation of a measure. Fossil fuel and water savings, O&M savings, and increases in productivity are examples of Non-Electric Impacts. Non-Electric Impacts can be negative (i.e., increased maintenance or increased fossil fuel usage resulting from a measure). Non-Electric Impacts may also include non-quantifiable impacts that are difficult to quantify, such as increased comfort. "Non-Energy Impacts" is a subset of Non-Electric Impacts that does not include fossil fuel savings or costs.

Non-Participant: A customer who is eligible to participate in a program but does not. A non-participant may install a measure because they became aware of the benefits through program marketing or outreach, but the installation of the measure is not through regular program channels. As a result, their actions are normally only detected through evaluations (*See Spillover*).

Operating Hours: The annual amount of time, in hours, that the equipment is expected to operate. *Contrast Equivalent Full Load Hours.*

Participant: A customer who installs a measure through regular program channels and receives any benefit (i.e., incentive) that is available through the program because of their participation. Free-riders are a subset of this group.

Peak Day Factor: Multipliers that are used to calculate peak day reductions based on annual natural gas energy savings.

Peak Day, Natural Gas: The one day (24 hours) of maximum system deliveries of natural gas during a year.

Peak Demand: The highest electric demand in a given period of time that is usually expressed in kW.

Peak Demand Savings: The kW demand reduction that occurs in the peak hours. The Peak Demand Savings is usually determined by multiplying the demand reduction attributed to the measure by the appropriate seasonal or on-peak coincidence factor. There is both a summer peak and a winter peak. (Coincidence factors for different measures for each peak are shown in Appendix One.) Two peak periods are used:

- Seasonal Peak Hours are those hours in which the actual, real-time hourly load Monday through Friday on non-holidays, during the months of June, July, August, December, and January, as determined by ISO-NE, is equal to or greater than 90 percent of the most recent 50/50 system peak load forecast, as determined by ISO-NE, for the applicable summer or winter season.
- **On-Peak Hours** are hours 1:00-5:00 p.m., Monday through Friday on non-holidays during the months of June, July, and August and from 5:00-7:00 p.m., Monday through Friday on non-holidays during the months of December and January.

The Seasonal Peak demand savings are used in the C&LM programs. *See also Coincidence Factor and Demand Savings.*

Peak Factor: Multipliers that are used to calculate peak demand reductions for measures based on the annual electric energy savings of the measure. The units of peak factors are W/kWh based on end use.

Realization of Savings: The ratio of actual measure savings to gross measure savings (sometimes referred to as the "realization rate"). This ratio takes into account impact factors that can influence the actual savings of a program such as spillover, free-ridership, etc.

Retrofit: The replacement of a piece of equipment or device before the end of its useful or planned life, for the purpose of achieving energy savings. Retrofit measures are sometimes referred to as "early retirement" when the removal of the old equipment is aggressively pursued. Residential measures utilize a two-part lifetime savings calculation. In certain situations, such as early retirement, savings may be claimed in two parts: (1) where the retirement part is additional to the lost opportunity part until the end of the Remaining Useful Life ("RUL"), and (2) after which lost opportunity savings continue until the last year of the retrofit measure's Effective Useful Life ("EUL"). *Contrast "Lost Opportunity."*

R-Value: A measure of thermal resistance of a material or system, equal to the reciprocal of the U-Value, used to calculate heat gain or loss. The R-Value is expressed as degree Fahrenheit square feet hours per Btu (ft².°F·h/Btu).

Seasonal Energy Efficiency Ratio ("SEER"): The total cooling output of a central air conditioning unit in Btus during its normal usage period for cooling divided by the total electrical energy input in watt-hours during the same period, as determined using specified federal test procedures.

Sector: A system for grouping customers with similar characteristics. For the purpose of the 2019 PSD manual, the sectors are C&I, Small Business ("SMB"), Residential, Non-Limited Income ("NLI"), and Limited Income ("LI").

Spillover: Savings attributable to a C&LM program, but in addition to the program's Gross (tracked) Savings. Spillover includes the effects of: (a) participants who install additional energy-efficient measures as a result of what they learned in the C&LM program; or (b) non-participants who install or influence the installation of energy-efficient measures as a result of being influenced by the C&LM program.

Summer Demand Savings: Refers to the demand savings that occur during the summer peak period. See discussion under Peak Demand Savings.

U-Value: A measure of the heat transmission through a material (such as insulation) or system. The lower the U-Value, the greater resistance to heat flow and the better its insulation value.

Winter Demand Savings: Refers to average demand savings that occurs during the winter peak period. See discussion under Peak Demand Savings.

This page intentionally blank.

SECTION TWO: C&I LOST OPPORTUNITY

2.1 LIGHTING

2.1.1 Standard Lighting

Description of Measure

Installation of interior and/or exterior lighting which exceeds current energy code baseline.

Savings Methodology

- Interior Lighting: The difference between installed lighting and code lighting power density (LPD, watts per square foot) for the facility is used to estimate energy and seasonal peak demand savings. In addition to the savings from reduction in power density, savings are also calculated for installation of occupancy sensors and residential fixtures as applicable (Note [1]). Reduction of lighting power reduces the cooling load and provides additional savings, which are also calculated in this measure. This measure includes baseline lighting power densities based on 2012 and 2015 IECC Standard and Additional Efficiency code requirements; choose the appropriate table. If projects are initiated after the new code adoption, then 2015 IECC is the default used to evaluate the energy savings. Code requires lighting controls for buildings over 5,000 square feet. Therefore, occupancy sensor savings are only calculated if buildings > 5,000 square feet have occupancy sensors in addition to the code required scheduled lighting control.
- Exterior Lighting: The default baseline for exterior lighting is ASHRAE 90.1-2013. According to the ASHRAE code, the total lighting power allowance for exterior building applications is the sum of the base site allowance plus the individual allowances for areas listed in Table 2-F for the applicable lighting zone. Trade-offs are allowed only among exterior lighting applications listed in Table 2-F. The lighting zone for the building exterior is determined from Table 2-G.

Inputs

Table 2-A: Inputs

Symbol	Description	Units
Allowable LPD	Allowable LPD from 2012 IECC	Watts/ft ²
	Total Fixture Connected kW	kW
	Facility Illuminated Area	ft²

Nomenclature

Table 2-B: Nomenclature

ltem	Description	Units	Values	Comments
А	Facility Illuminated Area	ft²		
AKWH	Annual Gross Electric Energy Savings	kWh		
ASHRAE	American Society of Heating, Refrigerating, and Air-Conditioning Engineers			
CFI	Lighting Coincidence Factor			Appendix One
CFos	Occupancy Sensor Coincidence Factor			Appendix One
CF _{hw}	Residential Lighting Coincidence Factor			Appendix One
СОР	Coefficient of Performance		4.5	Note [3]
DeltaW _{hw}	Delta Watts of Hardwired Fluorescent Fixtures in Residential Areas as Calculated per Section 4.1.2 of the 2019 PSD			
F	Fraction of Lighting Energy that Must be Removed by the Facility's Cooling System			
G	Estimated Lighting Energy Heat		0.73	Note [4]
Н	Facility Lighting Hours of Use	hrs		Site Specific or Appendix Five
HVAC	Heating, Ventilation, and Air Conditioning			
kW	Electric Demand	kW		
LPD	Lighting Power Density	Watts/ft ²		
N	Number of Different Fixture Types with Occupancy Sensors			
Ν	Fixture Number			
On	Quantity of Fixtures of Type n that have Occupancy Sensors			
Sc	Energy Savings from Reduced Cooling Load	kWh		
S _{hw}	Energy Savings from Installation of Hard-wired Fluorescent Fixtures in Residential Areas	kWh		
S _{lpd}	Energy Savings due to Lower Lighting Power Density	kWh		
Sos	Energy Savings from Use of Occupancy Sensors, if applicable	kWh		
Sext	Exterior Energy Savings	kWh		
W	Fixture Input Wattage	Watts		
Wn	Input Watts for Fixture Type n	Watts		

Lost Opportunity Gross Energy Savings, Electric

Interior lighting:

$$S = S_{lpd} + S_{os} + S_{hw} + S_c$$

Calculation of savings due to lower LPD:

$$S_{lpd} = (Allowable LPD - ActualLPD) \times H \times A$$

<u>Allowable LPD</u>, in W/ft², is the value of Watts per ft² from ASHRAE for the facility type divided by 1,000. The building area LPDs from IECC are provided in the tables below. Refer to 2015 IECC for the space-by-space method. When using the space-by-space method to calculate the LPD, an increase in a space's power allowances can be used, in accordance with 2015 IECC 405.4.2(2).

- Actual LPD, in kW/ft², is calculated by dividing the total Fixture Wattage by the Lighted Area, ft², where Fixture Wattage is the sum of the power consumed by each fixture.
- A = is calculated (measured) for each project, either from architectural drawings or by physical measurement.
- Calculation of savings due to occupancy sensors (Note [5]).

If the Actual LPD is less than or equal to the Allowable LPD, then S_{OS} will be calculated as follows; otherwise: $S_{OS} = 0$:

$$S_{OS} = \frac{0.3H}{1000} \sum_{n=1}^{N} O_n W_n$$

Explanation of numerical constants:

- 0.3 is the generally accepted average energy reduction fraction due to the use of occupancy sensors. See Ref [1].
- 1,000 converts watts to kW (1/1000 is the conversion).

Calculation of savings from hard-wired fluorescent fixtures in residential areas:

Refer to 2019 PSD Section 4.1.2 "Luminaire" for this calculation. Normally, the total number and type of fixtures in living areas is not known at the time of construction, so the LPD method cannot be used to calculate these savings. Where hard-wired fixtures are installed as part of new construction, they are usually shown on the building plans. Their savings are calculated per fixture according to the residential methodology.

Calculation of savings to remove excess heat produced by the new lighting fixtures. This is due to the reduced cooling required as the result of putting the new lighting in place:

S_c = Savings resulting from reduced cooling:

$$S_C = \frac{\left(S_{lpd} + S_{os} + S_{hw}\right) \times F}{COP}$$

- F = Fraction of annual kWh energy savings that must be removed by the cooling system. If the HVAC system includes an economizer, then F = 0.35. Otherwise, use Table 2-C.
- COP = 4.5 (Note: [3]).

Table 2-C: Fraction of Annual kWh Energy Savings that Must Be Removed by the Cooling System (See Ref [2])

Building Area, A, ft ²	F
< 2,000	0.48
2,000 – 20,000	$0.48 + \frac{0.195 \times (A - 2,000)}{18,000}$
> 20,000	0.675

Table 2-D: Lighting Power Densities Using the Building Area Method – IECC 2012 Standard Section C405.5.2(1) (Ref [3])

Building Area Type (see Note [2])	Lighting Power Density (W/ft²)
Automotive Facility	0.9
Convention Center	1.2
Court House	1.2
Dining: Bar Lounge/Leisure	1.3
Dining: Cafeteria/Fast Food	1.4
Dining: Family	1.6
Dormitory	1.0
Exercise Center	1.0
Fire Station	0.8
Gymnasium	1.1
Health Care Clinic	1.0
Hospital	1.2
Hotel	1.0
Library	1.3
Manufacturing Facility	1.3
Motel	1.0

Building Area Type (see Note [2])	Lighting Power Density (W/ft²)
Multi-Family	0.7
Museum	1.1
Office	0.9
Parking Garage	0.3
Penitentiary	1.0
Performing Arts Theatre	1.6
Police/Fire Station	1.0
Post Office	1.1
Religious Building	1.3
Retail	1.4
School/University	1.2
Sports Arena	1.1
Town Hall	1.1
Transportation	1.0
Warehouse	0.6
Workshop	1.4

Table 2-E: Lighting Power Densities Using the Building Area Method – IECC 2012 Section C406.3 Additional Efficiency Options (Ref [6])

Building Area Type ª (see Note [2])	Lighting Power Density (W/ft ²)	Building Area Type (see Note [2])	Lighting Power Density (W/ft ²)
Automotive Facility	0.82	Multi-Family	0.60
Convention Center	1.08	Museum	1.06
Court House	1.05	Office	0.90/0.85 ^b
Dining: Bar Lounge/Leisure	0.99	Parking Garage	-
Dining: Cafeteria/Fast Food	0.90	Penitentiary	-
Dining: Family	0.89	Performing Arts Theatre	1.39
Dormitory	0.61	Police/Fire Station	0.96
Exercise Center	0.88	Post Office	0.87
Fire Station	0.71	Religious Building	1.05
Gymnasium	1.00	Retail	1.40/1.30 ^b
Health Care Clinic	0.87	School/University	0.99
Hospital	1.10	Sports Arena	0.78
Hotel/Motel	0.88	Town Hall	0.92
Library	1.18	Transportation	0.77
Manufacturing Facility	1.11	Warehouse ^c	0.6

- a. In cases where both a general building area type and a more specific building area type are listed, the more specific building area type shall apply.
- First LPD value applies if no less than 30 percent of conditioned floor area is in a daylight zone. Automatic daylighting controls shall be installed in daylight zones and shall meet the requirements of Section C405.2.2.3. In all other cases, second LPD value applies.
- c. No less than 70 percent of the floor area shall be in the daylight zone. Automatic daylighting controls shall be installed in daylight zones and shall meet the requirements of Section C405.2.2.3.

Table 2-F: Lighting Power Densities Using the Building Area Method – IECC 2015 Standard Section
C405.4.2(1) Ref [7]) and Section C406.3 Additional Efficiency Options (Ref [8])

Building Area Type (see Note [2])	Standard Lighting Power Density (W/ft ²)	Additional efficiency option (W/ft^2)	Building Area Type (see Note [2])	Standard Lighting Power Density (W/ft²)
Automotive Facility	0.80	0.72	Motion Picture Theatre	0.76
Convention Center	1.01	0.91	Multi-Family	0.51
Court House	1.01	0.91	Museum	1.02
Dining: Bar	1.01		Office	0.82
Lounge/Leisure	1.01	0.91	Parking Garage	0.21
Dining: Cafeteria/Fast Food	0.9	0.81	Penitentiary	0.81
Dining: Family	0.95	0.86	Performing Arts Theatre	1.39
Dormitory	0.57	0.51	Police/Fire Station	0.87
Exercise Center	0.84	0.76	Post Office	0.87
Fire Station	0.67	0.60	Religious Building	1.0
Gymnasium	0.94	0.85	Retail	1.26
Health Care Clinic	0.9	0.81	School/University	0.87
Hospital	1.05	0.95	Sports Arena	0.91
Hotel/Motel	0.87	0.78	Town Hall	0.89
Library	1.19	1.07	Transportation	0.70
Aanufacturing Facility	1.17	1.05	Warehouse	0.66
Motel	0.87	0.78	Workshop	1.19

Exterior Lighting

Calculation of savings due to lower lighting power:

$$S_{ext} = (W_{ALLOWANCE} - W_{ACTUAL}) / 1000 \times H$$

Watts allowance is determined from Table 2-F:

H = Hours of Use

Table 2-G – Exterior Lighting Zones (Ref [5])

Lighting Zone	Description
1	Developed areas of national parks, state parks, forest land, and rural areas
2	Areas predominantly consisting of residential zoning, neighborhood business districts, light industrial with limited nighttime use and residential mixed use areas
3	All other areas
4	High-activity commercial districts in major metropolitan areas as designated by the local land use planning authority

Table 2-H – Exterior Lighting Power Allowances (Ref [5])

			Power Allowance				
Category		Space	Units	Zone	Zone	Zone	Zone
				1	2	3	4
Base Site Allowance			W	500	600	750	1300
	Uncovered Parking Areas	Parking Areas and Drives W/ft ²			0.06	0.10	0.13
	Building Grounds	Walkways less than 10 Feet Wide	W/Linear Foot	0.70	0.70	0.80	1.00
	Building Grounds	Walkways 10 feet Wide or Greater	W/ft ²	0.14	0.14	0.16	0.20
	Building Grounds	Plaza Areas	W/ft ²	0.14	0.14	0.16	0.20
	Building Grounds	Special Feature Areas	W/ft ²	0.14	0.14	0.16	0.20
	Building Grounds	Stairways	W/ft ²	0.75	1.00	1.00	1.00
S	Building Grounds	Pedestrian Tunnels	W/ft ²	0.15	0.15	0.20	0.30
face	Building Grounds	Landscaping	W/ft ²	0.04	0.05	0.05	0.05
Tradable Surfaces	Building Entrances and Exits	Main Entries	W/Linear Foot (door width)	20.0	20.0	30.0	30.0
Tradał	Building Entrances and Exits	Other Doors	W/Linear Foot (door width)	20.0	20.0	20.0	20.0
	Building Entrances and Exits	Entry Canopies	W/ft ²	0.25	0.25	0.40	0.40
	Sales Canopies	Canopies (free standing and attached)	W/ft ²	0.60	0.60	0.80	1.00
	Outdoor Sales	Open Areas (including vehicle sales lots)	W/ft ²	0.25	0.25	0.50	0.70
	Outdoor Sales	Street Frontage for Vehicle Sales Lots in Addition to "Open Area" Allowance	W/Linear Foot	-	10.0	10.0	30.0

					Power Allowance			
	Category	Space	Units	Zone 1	Zone 2	Zone 3	Zone 4	
Non-Tradable Surfaces	Building Facades- ft^2 Allowance		W/ft ²	-	0.10	0.15	0.20	
	Building Facades- Linear Foot Allowance		W/Linear Foot for Each Illuminated Wall or Surface Length	-	2.50	3.75	5.00	
	Automated Teller Machines and Night Depositories		W per Location	270 plus 90 W per add ATM	270 plus 90 W per add ATM	270 plus 90 W per add ATM	270 plus 90 W per add ATM	
	Entrances and Gatehouse Inspection Stations at Guarded Facilities		W/ft ² of Covered and Uncovered Area	0.75	0.75	0.75	0.75	
	Loading Areas for Law Enforcement, Fire, Ambulance, and Other Emergency Vehicles		W/ft²of Covered and Uncovered Area	0.50	0.50	0.50	0.50	
	Drive-Up Windows/Doors		W/Drive-Through	400	400	400	400	
	Parking Near 24 Hour Retail Entrances		W/Main Entry	800	800	800	800	

<u>Table 2-H – Exterior Lighting Power Allowances (continued)</u> (Ref [5])

Lost Opportunity Gross Energy Savings, Fossil Fuel

Space heating energy consumption will increase due to reduced lighting load (cooler lighting fixtures).

- Annual Oil Savings = -0.0007129 MMBtu per annual kWh saved; and
- Annual Natural Gas Savings = -0.000175 MMBTU per kWh. See Ref [4].

Note: No heating penalties are claimed in exterior lighting installation.

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

$$KW(summet) = \left((CF_L \times (AllowableLPD - ActualLPD) \times A) + CF_{OS} \times \frac{\sum_{n=1}^{N} O_n W_n}{1000} + CF_{hw} \times \frac{\sum Delta W_{hw}}{1000} \right) \times \left(1 + \frac{G}{COP} \right)$$
$$KW(winter) = \left((CF_L \times (AllowableLPD - ActualLPD) \times A) + CF_{OS} \times \frac{\sum_{n=1}^{N} O_n W_n}{1000} + CF_{hw} \times \frac{\sum Delta W_{hw}}{1000} \right)$$

- **CF**_L and **CF**_{os} are the lighting (CF_L) and occupancy sensor (CF_{Os}) coincidence factors (summer/winter) taken from Appendix One.
- Allowable LPD, in kW/ft² = the value of Watts per ft² from the 2015 IECC for the facility type divided by 1,000.
- Actual LPD, in kW/ft^2 = Total Fixture Wattage (kW) divided by the Lighted Area, ft^2 .
- A = is calculated for each project, either from architectural drawings or by physical measurement.
- CF_{hw} is the residential lighting coincidence factor (summer/winter) from Appendix One.
- **DeltaW**_{hw} = Delta watts of hardwired fluorescent fixtures in residential areas as calculated per Section 4.1.2 of the 2019 PSD.
- **G** = 0.73.
- COP = 4.5. Note [3].

Exterior Lighting Demand Savings

$$SKW = (W_{ALLOWANCE} - W_{ACTUAL}) / 1000 \times CFs$$
$$WKW = (W_{ALLOWANCE} - W_{ACTUAL}) / 1000 \times CFw$$

Changes from Last Version

Changed lost opportunity gas savings to 0.000175. Updated data in Table 2-F with values from the 2015 IECC.

References

- [1] D. Maniccia, B. Von Neida, and A. Tweed. An analysis of the energy and cost savings potential of occupancy sensors for commercial lighting systems, Illuminating Engineering Society of North America 2000 Annual Conference: Proceedings. IESNA: New York, NY, pp. 433-459.
- [2] The source of the equation for Sc and the derivation of the values for F is from "Calculating Lighting and HVAC Interactions," ASHRAE Journal, pp. 11-93 as used by KCPL.
- [3] 2012 IECC, Table C405.5.2(1) Interior Lighting Power Allowances: Building Area Method.
- [4] Massachusetts Technical Reference Manual, 2015 Program Year, p. 215.
- [5] ASHRAE 90.1 2013, Table 9.4.2-2: Individual Lighting Power Allowances for Building Exteriors.
- [6] 2015 IECC, Table C405.4.2(1) Interior Lighting Power Allowances: Building Area Method
- [7] 2015 IECC, Section C406.3 Reduced Interior Lighting Power.

Notes

- [1] If sensors are installed, the heat emitted from lighting affected by this measure will decrease due to lower lighting power and use. This will result in increased space heating energy consumption.
- [2] In cases where both general building area type and a specific building area type are listed; the specific building area type shall apply.
- [3] Estimated based on 2015 Connecticut Code. An analysis was conducted by Wood, Byk, and Associates, 829 Meadowview Road, Kennett Square, PA 19348, an engineering firm which was utilized to provide technical support for C&LM programs. The analysis was based on a DOE-2 default analysis and information was provided to Eversource engineering staff on Aug. 17, 2007.
- [4] 2015 IECC requires certain space types to have occupancy sensors. Savings for these occupancy sensors required by code therefore cannot be claimed. Refer to 2015 IECC C405.2.2.2 for details.

2.1.2. Upstream Lighting

Description of Measure

This section describes the savings methodology for LED lighting technologies incentivized through an upstream model.

Savings Methodology

The estimated savings (i.e., delta watts) are based on the Bright Opportunities Program, an upstream lighting initiative in Massachusetts (**Ref [1]**). Delta Watts are defined as the pre-installation, or baseline wattage, minus the post-installation wattage. The final annual energy savings (i.e., kWh) is modified to suit Connecticut program rules. All lighting products should be either ENERGY STAR (**Ref [3]**), Design Lights Consortium ("DLC") (**Ref [4]**), or CEE-qualified (**Ref [2]**).

Inputs

Table 2-I: Inputs

Symbol	Description	Units
N	No. of Units Sold at the Point of Sale	
	Product Type	

Nomenclature

Table 2-J: Nomenclature

ltem	Description	Units	Values	Comments
AKWH	Annual Energy Savings	kWh		
ΔkW	Delta Watts	Watts		
Н	Hours of Use	Hours		
SKW	Summer Demand Savings	kW		
WKW	Winter Demand Savings	kW		
CFs	Summer Lighting Coincidence Factor			Appendix One
CFw	Winter Lighting Coincidence Factor			Appendix One

Lost Opportunity Gross Energy Savings, Electric

$$AKWH = \frac{N \times \Delta kW \times H}{1000}$$

Where:

- N = No. of units
- ΔkW = Delta Watts per unit
- H = Hours of Use (Interior = 3,748; Exterior = 4,368; Stairwell = 6,132)

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

$$SKW = \frac{B \times CF_s}{1,000}$$
$$WKW = \frac{B \times CF_w}{1,000}$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Example

A MR16 LED bulb is sold at retail and incentivized through the Upstream Lighting program. For this bulb, the B (delta Watts per bulb) from Table 2-H is 23.4. In the absence of specific locational data, the Office Coincidence Factors from Appendix One of 70.2% (summer) and 53.9% (winter) are assumed.

 $SKW = \frac{23.4 \times 70.2\%}{1,000} = 0.016 \, kW$ $SKW = \frac{23.4 \times 53.9\%}{1,000} = 0.013 \, kW$

Changes from Last Version

No changes.

References

- Commercial and Industrial Upstream Lighting Program. Mass Save. Available at: <u>https://www.masssave.com/en/learn/partners/upstream-lighting/</u>. Last accessed May 22, 2018.
- [2] Commercial Lighting System Initiative. Consortium for Energy Efficiency (CEE). Available at: <u>http://library.cee1.org/content/commercial-lighting-systems-initiative</u>. Last accessed May 22, 2018.
- [3] ENERGY STAR-Certified Light Bulbs, Available at: <u>http://www.energystar.gov/productfinder/product/certified-light-bulbs/results</u>. Last Accessed May 22, 2018.
- [4] Design Lights Consortium product lists. Available at: <u>https://www.designlights.org/qpl</u>.

Notes

- [1] For interior fixtures/bulbs, use lighting hours of an office (general type) from Appendix Five of the 2019 PSD. For exterior fixtures/bulbs, use lighting hours of an exterior parking lot from Appendix Five of the 2019 PSD. For stairwell lights with occupancy sensors reduce operating hours by 30% (see Measure 2.1.2 Standard Lighting 8760x (.7) = 6132.
- [2] Delta Watts is the difference in consumption of an equivalent baseline lamp to a high-efficiency replacement lamp.
- [3] Design Lights Consortium product lists. Available at: <u>https://www.designlights.org/qpl</u>.

2.2 HVAC & WATER HEATING

2.2.1 Chillers

Description of Measure

Installation of efficient water-cooled and air-cooled water chilling packages (chillers). Chillers must use an environmentally-friendly refrigerant in order to qualify for the program.

Savings Methodology

Energy savings are custom calculated for each chiller installation based on the specific equipment, operational staging, operating profile, and load profile. A temperature BIN model is utilized to calculate the energy and demand savings for the chiller projects. Customer-specific information is used to estimate a load profile for the chilled water plant. Based on the loading, the chiller's actual part load performance is used to calculate the chiller's demand (kW) and consumption (kWh) for each temperature BIN (**Note** [1]). A chiller spreadsheet is used to calculate consumption for both the baseline and proposed units. It is also used to calculate the consumption of the auxiliaries (i.e., chilled water pumps, condenser water pumps, and cooling tower fans).

Table 2-K: Inputs

Symbol	Description	Units
	Facility Occupancy Hours per Week (On and Off-Peak)	Hr/week
	Chiller Plant Availability per Month	Y or N
	Peak Cooling Load @100°F (Occupied)	Tons
	Peak Cooling Load @100°F (Unoccupied)	Tons
	Economizer Set Point	°F
	Load at Economizer Set Point + (Occupied)	Tons
	Load at Economizer Set Point + (Unoccupied)	Tons
	Load at Economizer Set Point - (Occupied)	Tons
	Load at Economizer Set Point - (Unoccupied)	Tons
	Load at @ 0°F Outside Air Temp - (Occupied)	Tons
	Load at @ 0°F Outside Air Temp - (Unoccupied)	Tons
	Chiller(s) Capacity	Tons
	Condenser – Air or Water-Cooled	
	Compressor Type	
	ARI Part Load Efficiency @100% load, @75% load, @50% load, and @25% load	Note [2]
	Primary and Secondary Pumping – Brake Horsepower ("BHP")	BHP
	Secondary Chilled Water Pump Controls – Single Speed or Variable Frequency Drive	
	Condenser Water Pump – BHP	BHP
	Tower Fan – BHP	BHP
	Tower Fan Control – Single Speed, 2 Speed, Variable Frequency Drive	
	Percent Load on Lead Chiller before Lag Chiller Operation	%

Inputs

Nomenclature

Table 2-L: Nomenclature

Symbol	Description	Units	Values	Comments
IPLV	Integrated Part Load Value			Note [2]
BL100	Baseline Efficiency @ 100% load			Note [3]
BL75	Baseline Efficiency @ 75% load			
BL50	Baseline Efficiency @ 50% load			
BL25	Baseline Efficiency @ 25% load			

Lost Opportunity Gross Energy Savings, Electric

Equipment:

Each chiller plant is characterized by:

- Number of chillers.
- Sizes, in tons (the chillers may be of different sizes).
- Type, which may be:
 - Water-cooled centrifugal;
 - Water-cooled positive displacement (screw, scroll, and reciprocating); and
 - Air-cooled.
- Speed, constant, or variable.
- Auxiliary equipment:
 - Chilled water pumps;
 - Cooling tower pumps;
 - Cooling tower fans; and
 - o Other.

Operational staging:

If more than one chiller is used, their operational relationship can be defined. When the load is high enough to permit two chillers to operate, they can be designated to operate together at the same loading, or alternatively, either one can be operated at full output while the other follows the cooling load profile.

Operating profile:

The customer's cooling load profile, for each temperature BIN, is characterized by:

• Occupied hours the chiller is operated each week; and

• Un-occupied hours the chiller is operated each week.

Load profile:

A customer's representative (typically a design engineer) provides loads at various conditions. The customer's load profile is estimated by determining the load at the peak outdoor conditions and the load at the minimum conditions. For systems with an air-side or water-side economizer, the minimum conditions are those just above the set point of the economizer. If the customer's load profile is not known, a default load profile will be developed; in this case it is also necessary to determine the value of any process loads.

Savings calculation:

With the above information (chiller load and part load efficiencies) a calculation is made for each time period of the year based on the appropriate temperature BIN data. The calculation is performed once for the chillers meeting the baseline efficiencies, Table 2-M, and again for the proposed chillers, and the difference determines the kWh and kW savings for each period. These are summed to yield the total savings. Path A is intended for applications where significant operating time is expected at full-load and Path B is intended for applications where significant operating time is expected at part-load.

Equipment Type	Size Category	- ·		Path A ²		Path B ³	
	(tons)		Full Load⁵	IPLV ⁵	Full Load ⁵	IPLV ⁵	
Air-Cooled	<150	EER	≥10.100	≥13.700	≥9.700	≥15.800	
	≥150	EER	≥10.100	≥14.100	≥9.700	≥16.100	
Water-Cooled	< 75	kW/ton	≤0.750	≤0.600	≤0.780	≤0.500	
Positive	≥75 & < 150	kW/ton	≤0.720	≤0.560	≤0.750	≤0.490	
Displacement	≥150 & < 300	kW/ton	≤0.660	≤0.540	≤0.680	≤0.440	
	≥300 & <600	kW/ton	≤0.610	≤0.520	≤0.625	≤0.410	
	≥ 600	kW/ton	≤0.560	≤0.500	≤0.585	≤0.380	
Water-Cooled	<150	kW/ton	≤0.610	≤0.550	≤0.695	≤0.440	
Centrifugal	≥150 & < 300	kW/ton	≤0.610	≤0.550	≤0.635	≤0.400	
	≥300 & < 400	kW/ton	≤0.560	≤0.520	≤0.595	≤0.390	
	≥400	kW/ton	≤0.560	≤0.500	≤0.585	≤0.380	
¹ For water cooled	\leq 300 tons positive of	displacement	is the baseline. F	or > 300 tons Ce	ntrifugal is the ba	aseline.	
² Path A is intended	² Path A is intended for applications where significant operating time is expected at full-load.						
³ Path B is intended	³ Path B is intended for applications where significant operating time is expected at part-load.						
⁵ Rated based on N	lote [2].						

Table 2-M: Baseline Efficiencies for Electric¹ Chillers (Note 3)

Equipment	Size Category	Units	Part Load Efficiencies			
Туре	(tons)		100% Load	75% Load	50% Load	25% Load
Air-Cooled	< ₁₅₀	EER	10.100	12.265	14.797	14.878
	≥ ₁₅₀	EER	10.100	12.648	15.258	15.134
Water-Cooled	< 75	kW/ton	0.750	0.639	0.534	0.776
Positive	≥ 75 & < 150	kW/ton	0.720	0.596	0.498	0.728
Displacement	≥ 150 & < 300	kW/ton	0.660	0.574	0.480	0.713
	≥ 300 & < 600	kW/ton	0.610	0.556	0.464	0.662
	≥ ₆₀₀	kW/ton	0.560	0.534	0.446	0.636
Water-Cooled	< 150	kW/ton	0.610	0.565	0.521	0.616
Centrifugal	≥ 150 & < 300	kW/ton	0.610	0.565	0.521	0.616
	≥ 300 & < 600	kW/ton	0.560	0.536	0.494	0.565
	≥ ₆₀₀	kW/ton	0.560	0.515	0.475	0.547

Table 2-N: Baseline Part Load Efficiencies (Path A)

Table 2-O: Baseline Part Load Efficiencies (Path B)

Equipment	Size Category	Units	Part Load Efficiencies			
Туре	(tons)		100% Load	75% Load	50% Load	25% Load
Air-Cooled	< ₁₅₀	EER	9.7	14.145	17.065	17.359
	≥ ₁₅₀	EER	9.7	14.442	17.422	17.481
Water-Cooled	< 75	kW/ton	0.78	0.530	0.443	0.682
Positive	≥ 75 & < 150	kW/ton	0.75	0.518	0.432	0.692
Displacement	≥ 150 & < 300	kW/ton	0.68	0.467	0.390	0.587
	≥ 300 & < 600	kW/ton	0.625	0.435	0.364	0.548
	≥ ₆₀₀	kW/ton	0.585	0.403	0.337	0.508
Water-Cooled	< 150	kW/ton	0.695	0.547	0.377	0.405
Centrifugal	≥ 150 & < 300	kW/ton	0.635	0.497	0.343	0.368
	≥ 300 & < 600	kW/ton	0.595	0.486	0.335	0.349
	≥ ₆₀₀	kW/ton	0.585	0.474	0.327	0.338

Lost Opportunity Gross Energy Savings, Fossil Fuel

None.

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

The peak demand savings from the spreadsheet are assumed to be 100% coincident to the ISO-NE summer peak demand. There are no ISO-NE winter peak demand savings.

Non-Energy Impacts

Because the baseline and high-efficiency technology are the same for electric chillers, the majority of the projects have zero non-electric benefits (Non-Energy Impacts).

Changes from Last Version

Input 2015 IECC Code requirements.

Notes

- [1] The temperature BIN model was originally created by Bitterli & Associates, 10 Station Street, Simsbury, Conn. and has subsequently been modified by the engineering group at Eversource.
- [2] Either EER for air-cooled or kW/ton for water-cooled. Part load performance based on AHRI 550/590.
- [3] Developed using typical chiller part load curves and the baseline efficiencies in Tables 2-M. The tables are based on IECC 2015 Table C403.2.3(7).

2.2.2 Unitary A/C and Heat Pumps

Description of Measure

Installation of a high-efficiency Direct-Expansion ("DX") unitary or split cooling system or air-source heat pump.

Savings Methodology

Savings are estimated using full load hours analysis, comparing the difference in efficiency between a baseline (code compliant) and installed efficiency. This measure includes baseline efficiency values based on 2012 and 2015 IECC standard efficiency options.

Inputs

Symbol	Description	Units
	Facility Type Served by Equipment	
CAP _C	Installed Cooling Capacity	Btu/hr
CAPH	Installed Heating Capacity	Btu/hr
EERi	EER , \geq 65,000 Btu/hr – Installed (ARI 340/360)	Btu/watt-hr
SEER _i	SEER, Units < 65,000 Btu/hr – Installed (ARI 210/240)	Btu/watt-hr
HSPF _i	HSPF, Heat Pumps < 65,000 Btu/hr – Installed (ARI 210/240)	Btu/watt-hr
COPi	High Temperature COP, Heat Pumps \geq 65,000 Btu/hr – Installed (ARI 340/360)	

Table 2-P: Inputs

Nomenclature

Table 2-Q: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH _C	Annual Gross Electric Energy Savings – Cooling	kWh		
AKWH _H	Annual Gross Electric Energy Savings – Heating	kWh		
CAP _C	Installed Cooling Capacity	Btu/hr		Input
CAP _H	Installed Heating Capacity	Btu/hr		Input
CFc	Seasonal Summer Cooling Coincidence Factor	%		Appendix One
COPb	High Temperature COP, Heat Pumps \geq 65,000 Btu/hr – Baseline			Note [1]
COPi	High Temperature COP, Heat Pumps \ge 65,000 Btu/h – Installed	Btu/watt-hr		Input
EER _b	EER , \geq 65,000 Btu/hr – Baseline	Btu/watt-hr		Note [1]
EERi	EER , \geq 65,000 Btu/hr – Installed	Btu/watt-hr		Input
EFLH _C	Equivalent Full Load Hours – Cooling	Hrs		Appendix Five
EFLH _H	Equivalent Full Load Hours – Heating	Hrs		Appendix Five

Lost Opportunity Gross Energy Savings, Electric

Cooling (A/C units and air source heat pumps):

$$AKWH_{C} = CAP_{C} \times \left(\frac{1}{EER_{b}} - \frac{1}{EER_{i}}\right) \times \frac{kW}{1000W} \times EFLH_{C}$$

Reminder: SEER used in place of EER for units under 65,000 Btu/hr.

Heating (air source heat pumps only):

$$AKWH_{H} = CAP_{H} \times \left(\frac{1}{HSPF_{b}} - \frac{1}{HSPF_{i}}\right) \times \frac{kW}{1000W} \times EFLH_{H}$$

<u>**Reminder</u>**: COP multiplied by 3.412 can be used in place of HSPF for units \geq 65,000 Btu/hr. There are two paths for complying with the ASHRAE 90.1 2010 Standards. The Baseline Efficiencies (Tables 2-R, 2-S, and 2-T) and Additional Efficiencies (Table 2-U) path.</u>

Size (Btu/h)	Units with Electric Resistance or No Heating Section	Units with Heating Section Other Than Electric Resistance
< 65,000	13.0 SEER	13.0 SEER
≥ 65,000 and < 135,000	11.2 EER	11.0 EER
≥ 135,000 and < 240,000	11.0 EER	10.8 EER
≥ 240,000 and < 375,000	10.0 EER	9.8 EER
≥ 375,000 and < 760,000	10.0 EER	9.8 EER
≥ 760,000	9.7 EER	9.5 EER

Table 2-S: Baseline Efficiencies – Unitary and Split System Heat Pumps – 2012 IECC (Note [2])

	Со	oling Mode	Heating Mode @
Size (Btu/h)	Units with Electric Resistance or No Heating Section	Units with Heating Section Other Than Electric Resistance	47°F db/43°F wb
< 65,000	13.0 SEER	13.0 SEER	7.7 HSPF
≥ 65,000 and < 135,000	11.0 EER	10.8 EER	3.3 COP
\geq 135,000 and < 240,000	10.6 EER	10.4 EER	3.2 COP
≥ 240,000 and < 375,000	9.5 EER	9.3 EER	3.2 COP
≥ 375,000 and < 760,000	9.5 EER	9.3 EER	3.2 COP
≥ 760,000	9.5 EER	9.3 EER	3.2 COP

Table 2-T: Baseline Efficiencies – Unitary and Split System AC 2015 IECC (Note [3])

Size (Btu/h)	Units with Electric Resistance or No Heating Section	Units with Heating Section Other Than Electric Resistance
< 65,000	13.0 SEER	13.0 SEER
	14.0 SEER	14.0 SEER
≥ 65,000 and < 135,000	11.2 EER	11.0 EER
	12.9 IEER	12.7 IEER
\geq 135,000 and < 240,000	11.0 EER	10.8 EER
	12.4 IEER	12.2 IEER
≥ 240,000 and < 760,000	10.0 EER	9.8 EER
	11.6 IEER	11.4 IEER
≥ 760,000	9.7 EER	9.5 EER
	11.2 IEER	11.0 IEER

	Coo	oling Mode	Heating Mode @
Size (Btu/h)	Units with Electric Resistance or No Heating Section	Units with Heating Section Other Than Electric Resistance	47°F db/43°F wb
< 65,000, Split Systems	13.0 SEER	13.0 SEER	8.2 HSPF
< 65,000, Single Package	13.0 SEER	13.0 SEER	8.0 HSPF
≥ 65,000 and < 135,000	11.0 EER	10.8 EER	3.3 COP
≥ 135,000 and < 240,000	10.6 EER	10.4 EER	3.2 COP
≥ 240,000 and < 375,000	9.5 EER	9.3 EER	3.2 COP
≥ 375,000 and < 760,000	9.5 EER	9.3 EER	3.2 COP
≥ 760,000	9.5 EER	9.3 EER	3.2 COP

Table 2-U: Baseline Efficiencies – Unitary and Split System Heat Pumps – 2015 IECC (Note [4])

Lost Opportunity Gross Energy Savings, Example

A 120,000 Btu/hr rooftop A/C unit is installed on an office building. The new unit has a rated EER of 12.5. What is the measure's annual lost opportunity savings?

Cooling (A/C units and air-source heat pumps):

$$AKWH_{C} = CAP_{C} \times \left(\frac{1}{EER_{b}} - \frac{1}{EER_{i}}\right) \times \frac{kW}{1000W} \times EFLH_{C}$$

From Appendix Five, the cooling equivalent full load hours for an office are 797 hours. EER_b from Table 2-T = 11 EER:

$$AKWH_{C} = 120,000 \times \left(\frac{1}{11} - \frac{1}{12.5}\right) \times \frac{kW}{1000W} \times 797 = 1,043kWh$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

$$SKW_{C} = CAP_{C} \times \left(\frac{1}{EER_{b}} - \frac{1}{EER_{i}}\right) \times \frac{kW}{1000W} \times CF_{C}$$

 $WKW_H = 0$

<u>Reminder</u>: Cooling only units have no winter demand savings since they do not operate during the winter. Air-source heat pumps have no winter demand savings because they use resistance back-up at low outside air temperatures.

Lost Opportunity Gross Peak Demand Savings, Example

A 120,000 Btu/hr rooftop A/C unit is installed on an office building. The new unit has a rated EER of 12.5. What is the unit's seasonal peak savings?

$$SKW_{C} = CAP_{C} \times \left(\frac{1}{EER_{b}} - \frac{1}{EER_{i}}\right) \times \frac{kW}{1000W} \times CF_{C}$$

Note: From Appendix One, the seasonal coincidence factor for cooling = 0.82.

EER_b from Table 2-T = 11 EER:

$$SKW_{C} = 120,000 \times \left(\frac{1}{11} - \frac{1}{12.5}\right) \times \frac{kW}{1000W} \times 0.82 = 1.07kW$$

$$WKW_{H}=0$$

Cooling-only units have no winter demand savings since they do not operate during the winter.

Changes from Last Version

• 2015 IECC Code Updates.

Notes

- [1] Table 2-R above is based on 2012 IECC (CT Code) Table C403.2.3(1).
- [2] Table 2-S above is based on 2012 IECC (CT Code) Table C403.2.3(2).
- [3] Table 2-T above is based on 2015 IECC (CT Code) Table C403.2.3(1).
- [4] Table 2-U above is based on 2015 IECC (CT Code) C403.2.3(1).

2.2.3 Water and Ground Sourced Heat Pump

Description of Measure

High-efficiency water-source, ground water source, and ground-coupled heat pump units.

Savings Methodology

Savings are estimated using a full-load hour analysis, comparing the difference in efficiency between a baseline (code compliant) and installed efficiency.

Inputs

Table 2-V: Inputs

Symbol	Description	Units
	Facility type served by equipment and system type	
	(water source, ground water, ground loop)	
CAP _C	Installed Cooling Capacity	Btu/h
CAP _H	Installed Heating Capacity	Btu/h
EERi	EER – installed (ISO 13256-1)	Btu/watt-hr
COPi	COP-Installed (ISO 13256-1)	

Nomenclature

Table 2-W: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH _C	Annual Electric Energy Savings - Cooling	kWh		
AKWH _H	Annual Electric Energy Savings - Heating	kWh		
CAP _C	Installed Cooling Capacity	Btu/hr		Input
CAP _H	Installed Heating Capacity	Btu/hr		Input
CFc	Seasonal Summer Cooling Coincidence Factor	%		Appendix One
СF _H	Seasonal Summer Heating Coincidence Factor	%		Appendix One
COPb	High-temperature COP, Heat pumps 65,000 Btu/h-			Note [1]
	Baseline			
COPi	COP- Installed			Input
EER _b	EER - Baseline	Btu/watt-hr		Note [1]
EERi	EER- Installed	Btu/watt-hr		Input
EFLH _C	Equivalent Full Load Hours - Cooling	Hrs		Appendix Five
EFLH _H	Equivalent Full Load Hours - Heating	Hrs		Appendix Five
SKWc	Seasonal Summer Peak Savings - Cooling	kW		
WKW _H	Seasonal Winter Peak Savings - Heating	kW		

Lost Opportunity Gross Energy Savings, Electric

Cooling:

$$AKWH_{C} = CAP_{C} \times \left(\frac{1}{EER_{b}} - \frac{1}{EER_{i}}\right) \times \frac{kW}{1000W} \times EFLH_{C}$$

Heating:

$$AKWH_{H} = CAP_{H} \times \left(\frac{1}{COP_{b}} - \frac{1}{COP_{i}}\right) \times \frac{1}{3.412} \times \frac{kW}{1000W} \times EFLH_{H}$$

Туре	Cooling Capacity Btu/hr	EER _b	COPb
Water Source Heat Pump (Closed loop within a building, served by boiler and cooling tower)	< 17,000	11.2	4.3
Water Source Heat Pump (Closed loop within a building, served by boiler and cooling tower)	≥ 17,000 & <135,000	13.0	4.3
Ground Water Heat Pump (The water used by the heat pump is in contact with the ground)	< 135,000	16.3	3.6
Ground Loop Heat Pump (The water used by the heat pump is isolated from contact with the ground)	< 135,000	13.4	3.1

Table 2-X: Baseline Efficiencies (See Note [1])

Lost Opportunity Gross Energy Savings, Example

A ground loop water to air heat pump is installed in an office building. The heating capacity is 99,000 Btu/hr with a COP of 3.5. The cooling capacity is 125,000 Btu/h with an EER of 15. What are the annual lost opportunity energy savings?

Cooling:

$$AKWH_{C} = CAP_{C} \times \left(\frac{1}{EER_{b}} - \frac{1}{EER_{i}}\right) \times \frac{kW}{1000W} \times EFLH_{C}$$

From Appendix 5, the cooling equivalent full load hours for an office are 797 hours. The EER_b is from Table 1 = 13.4:

$$AKWH_{C} = 125,000 \times \left(\frac{1}{13.4} - \frac{1}{15}\right) \times \frac{kW}{1000W} \times 797 = 793 \, kWh$$

Heating:

$$AKWH_{H} = CAP_{H} \times \left(\frac{1}{COP_{b}} - \frac{1}{COP_{i}}\right) \times \frac{1}{3.412} \times \frac{kW}{1000W} \times EFLH_{H}$$

From Appendix Five, the heating equivalent full load hours for an office are 1,248 hours. The COP_b is from Table 1 = 3.1.

$$AKWH_{H} = 99,000 \times \left(\frac{1}{3.1} - \frac{1}{3.5}\right) \times \frac{1}{3.412} \times \frac{kW}{1000W} \times 1,248 = 1,335$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (Winter and Summer)

Cooling:

$$SKW_{C} = CF_{C} \times CAP_{C} \times \left(\frac{1}{EER_{b}} - \frac{1}{EER_{i}}\right) \times \frac{kW}{1000W}$$

Heating:

$$WKW_{H} = CF_{H} \times CAP_{H} \times \left(\frac{1}{COP_{b}} - \frac{1}{COP_{i}}\right) \times \frac{1}{3.412} \times \frac{kW}{1000W}$$

Lost Opportunity Gross Peak Demand Savings, Example

A ground loop water to air-source heat pump is installed in an office building. The heating capacity is 99,000 Btu/hr with a COP of 3.5. The cooling capacity is 125,000 Btu/h with an EER of 15. What are the lost opportunity seasonal demand savings?

Cooling:

$$SKW_{C} = CF_{C} \times CAP_{C} \times \left(\frac{1}{EER_{b}} - \frac{1}{EER_{i}}\right) \times \frac{kW}{1000W}$$

From Appendix One, the seasonal coincidence factor for cooling = 0.82. The EER_b is from Table 1 = 13.4:

$$SKW_{C} = 0.82 \times 125,000 \times \left(\frac{1}{13.4} - \frac{1}{15}\right) \times \frac{kW}{1000W} = 0.82 \, kW$$

Heating:

$$WKW_{H} = CF_{H} \times CAP_{H} \times \left(\frac{1}{COP_{b}} - \frac{1}{COP_{i}}\right) \times \frac{1}{3.412} \times \frac{kW}{1000W}$$

The seasonal coincidence factor is assumed to be the same as the summer factor = 0.82. The COP_b from Table 1 = 3.1:

$$WKW_{H} = 0.82 \times 99,000 \times \left(\frac{1}{3.1} - \frac{1}{3.5}\right) \times \frac{1}{3.412} \times \frac{kW}{1000W} = 0.88 kW$$

Changes from Last Version

• Removed any references to 2009 IECC.

Notes

[1] Table 2-X is based on the 2015 International Energy Conservation Code's Table C403.2.3 (CT Code).

2.2.4 Dual Enthalpy Controls

Description of Measure

Upgrade to a dual enthalpy economizer instead of outside air dry bulb economizer. The system will continuously monitor the enthalpy of both the outside air and return air while controlling system dampers to adjust the outside quantity based on the two readings. When the measured enthalpy of the outdoor air is greater than the enthalpy of the return air the enthalpy economizer will disengage.

Savings Methodology

Wood, Byk and Associates (Note [1]) modeled the savings achieved by upgrading from single dry-bulb to dual enthalpy economizer control for a variety of typical C&I facility types and sizes using the hourly building simulation tool DOE-2. Simulation results were reviewed and annual electrical savings per ton calculated. The simulation revealed that summer and winter peak demand savings were zero because economizer cooling does not occur during the seasonal peaks.

Inputs

Table 2-V: Inputs

I	Symbol	Description	Units
	CAPi	Installed Cooling Capacity Controlled by Economizers	Tons

Nomenclature

Table 2-W: Nomenclature

Symbol	Description	Units	Values	Comments
ADET	Annual Differential Electrical Energy Savings per Ton	kWh/Ton	276	Note [2]
AKWH _C	Annual Electric Energy Savings, Cooling	kWh		
CAPi	Installed Cooling Capacity Controlled by Economizers	Tons		Input
SKW	Summer Demand Savings	kW	0	Note [3]
WKW	Winter Demand Savings	kW	0	Note [3]

Lost Opportunity Gross Energy Savings, Electric

$$AKWH_C = ADET \times CAP_i$$

 $AKWH_C = 276 \times CAP_i$

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

- SKW = 0 (See Note [3]).
- WKW = 0 (See **Note [3]**).

Changes from Last Version

No changes.

Notes

- [1] Wood, Byk, & Associates, Consulting Engineers, 829 Meadowview Road, Kennett Square, PA 19348.
- [2] Results are from the modeling performed by Wood, Byk, and Associates in 2001. The model provided savings for several locations throughout the Northeast. Savings for this measure is based on Hartford, Conn.
- [3] Since economizers save when outdoor air temperature is relatively low (< 70 °F) and the seasonal peak is expected to occur at high outside air temperature, the seasonal peak savings for this measure are assumed to be 0.

2.2.5 Demand Control Ventilation

Description of Measure

Upgrade to HVAC system to control outside air flow based on CO_2 levels. The proposed system monitors the CO_2 in the spaces or return air and reduces the outside air when possible to save energy while meeting indoor air quality standards.

Savings Methodology

The energy savings are calculated based on site specific input for all projects. Savings are based on hours of operation, return air dry bulb temperature, return air enthalpy, system total air flow, percent outside air, estimated average outside air reduction, and cooling and heating efficiencies. Savings are estimated using a temperature BIN spreadsheet that uses the reduction of outside air to calculate the energy saved by not having to condition that air. The savings is calculated for each temperature BIN with the exception of BINs that would include economizer cooling.

Summer seasonal peak demand savings are calculated based on the top two temperature BINs used in the spreadsheet. Natural gas peak day savings are calculated using the peak day factor for furnace/boiler of 0.0152 from measure 2.2.6 since the savings for this measure are consistent with the furnace/boiler savings profile. The baseline for this measure is a system with no CO₂ ventilation control.

Symbol	Description	Units
	Operation Schedule of HVAC Unit, including Days and Time	
	Area Type Served by HVAC Unit	
EER	Cooling Efficiency	Btu/watt-hr
	Heating Efficiency	%
	Total System Air Flow	CFM
	Design Outside Air Percentage	%
	Average Expected Reduction in Air Flow	%
	Return Air Temperature	°F
	Building Balance Point	°F

Inputs

Table 2-X: Inputs

Changes from Last Version

No changes.

2.2.6 Natural Gas Fired Boiler and Furnace

Description of Measure

This measure encourages the installation of high-efficiency, natural gas-fired, hydronic heating boilers and furnaces.

Savings Methodology

Energy savings are calculated using the efficiency of the proposed boiler or furnace versus the baseline efficiency. Baseline minimum efficiencies for boilers and furnaces are specified in IECC 2015 Tables 403.2.3 (4) and 403.2.3 (5), respectively (**Note [2]**). If the boiler is used for domestic hot water, in addition to heating, the project should be handled as a custom measure (See 2.6.3 Lost Opportunity Custom in the 2019 PSD).

The peak day factors developed for this prescriptive approach are based on the results from a sampling of existing custom projects in which local BIN weather data was used to calculate savings of both high-efficiency conventional and condensing boilers. The data from the temperature BIN analysis was used to compute savings for the coldest 24-hour period of the year. The peak day factors were based on the average of these projects (**Note [1]**). Ratios of demand savings to annual energy savings were then developed for both conventional (0.0152) and condensing boilers (0.0133).

The peak factor for furnaces is estimated at 0.0152 since furnace savings follow the same load shape as the conventional boilers. Although the magnitude of the demand savings for the condensing boilers was greater than that of the conventional boilers, the condensing boiler demand-to-energy-savings ratio was smaller. To meet the heating load, hot water reset increases the boiler water temperature as the outside air temperature decreases. The higher water temperature has a negative effect on the condensing boiler's efficiency at those conditions. The effect reduces the percent savings during the peak day.

Inputs

|--|

Symbol	Description	Units	
	Facility Type		
ηр	Proposed Case Efficiency		
САР	Boiler or Furnace Output Capacity	BTU/hr	

Nomenclature

Table 2-Z: Nomenclature

Symbol	Description	Units	Values	Comments
ACCF	Gross Annual Energy Savings	ccf		
AF	Adjustment Factor		1.0 or	Use 1.0 for non-
			0.97	condensing units and
				0.97 for condensing units
CAP	Installed Boiler or Furnace Output Capacity	BTU/hr		
EFLH	Equivalent Full Load Hours	Hours	Table 2-	
			AA	
OF	Oversize Factor			Note [2]
PD	Gross Peak Day Natural Gas Savings			
ηb	Base Case Efficiency	Percent		IECC-2015
ηp	Proposed Case Efficiency	Percent		

Lost Opportunity Gross Energy Savings, Fossil Fuel

Heating savings:

$$ACCF = \left[\frac{CAP}{OF} \times \left(\frac{EFLH}{102,900Btu / ccf}\right) \times \left(\frac{1}{\eta b} - \frac{1}{AF \times \eta p}\right)\right]$$

Table 2-AA: Equivalent Full Load Heating Hour Range (Note [1])

Occupancy Category	Equivalent Full-Load Heating Hours (Note 4)
Residential, Hospitals, Police, and Fire Stations (24/7	1,519
operation)	
Manufacturing	1,140
Retail Sales/Restaurants	1,170
Offices	1,306
Schools	1,176
Average Value for Upstream Program	1,100
Occupancy Category	Equivalent Full Load Heating Hours

4. The above EFLH should be used for boilers and furnaces and not Appendix Five values. Appendix Five heating EFLH are for heat pumps only.

Lost Opportunity Gross Peak Day Savings, Natural Gas

Factors based.

Conventional (non-condensing) boiler peak day natural gas savings (CCF):

 $PD = 0.0152 \times ACCF$

Condensing boiler peak day natural gas savings (CCF):

 $PD = 0.0133 \times ACCF$

Furnace peak day natural gas savings (CCF):

$$PD = 0.0152 \times ACCF$$

Changes from Last Version

Updated reference ASHRAE 90.1-2010 to IECC-2015.

Notes

- [1] Peak day factors and full load hours were developed by third party engineers (Fuss & O'Neill, Manchester, Conn.) in 2008 using a temperature BIN analysis. The engineering analysis was provided to Eversource (natural gas), CNG, and SCG to help support natural gas conservation efforts.
- [2] The oversize factor ("OF") is assumed to be 1.15 for single boiler/furnace installations; reflecting the industry standard of installing equipment that has an output greater than estimated peak load. The OF for multiple boiler and furnace installation is 1.3 reflecting the industry practice of oversizing multiple pieces of equipment to allow for one piece of equipment to provide a higher percentage of load in emergency situations.
- [3] ASHRAE and IECC-2015 minimum efficiency requirements are based on input capacity.

2.2.7 Natural Gas Radiant Heaters

Description of Measure

Installation of natural gas-fired, low-intensity, vented, radiant heaters.

Savings Methodology

Energy savings is estimated to be 25% of the consumption of a conventional natural gas-fired unit heater with the same heating load (based on **Ref [1]**).

Demand savings calculation methodology is based on the results of sample savings numbers for various building types using a temperature BIN model. To calculate the peak demand factor, the savings from the coldest 24-hour period of the year was divided by the total savings (See **Note [1]**). From this, ratios of the demand savings (CCF) to annual energy savings (CCF) were developed, resulting in the average demand savings fraction of annual savings of 0.00544.

Inputs

Table 2-BB: Inputs

Symbol	Description		
САР	Installed Heating Capacity in BTU/hr		
	Facility Type		

Nomenclature

Table 2-CC: Nomenclature

Symbol	Description	Units	Values	Comments
ACCF	Gross Annual Gas Energy Savings	ccf		
CCF	100 Cubic Feet	ccf		
	The equivalent hours that the heater		Table 2-DD,	Note [3]
	would need to operate at its peak		Appendix Five	
EFLH	capacity in order to consume its			
	estimated consumption (Annual Btu/			
	Full Load Btu/hr)	Hours		
САР	Installed Heating Capacity in Btu/hr			Note [2]
OF	Oversize Factor			Note [2]
PD	Gross Peak Day Savings	ccf		
SFR	Savings Fraction		25%	Ref [1]
ηb	Base Case Efficiency		80%	Ref [2]

Lost Opportunity Gross Energy Savings, Fossil Fuel

Heating savings:

$$ACCF = \frac{CAP}{OF} * EFLH * \frac{SFR}{(102,900btu / Ccf \times \eta b)}$$

Table 2-DD: Equivalent Full-Load Heating Hour Range (Note [3])

Occupancy Category	Equivalent Full-Load Heating Hours
Warehouse, Storage, and Fire Stations (24/7 operation)	1,519
Manufacturing	1,140
Retail Sales/Other	1,170

Lost Opportunity Gross Peak Day Savings, Natural Gas

PD = 0.00544 x ACCF

Changes from Last Version

• Ref [2] updated.

References

- [1] ASHRAE Technical Paper #4643, "Evaluation of an Infrared Two-Stage Heating System in a Commercial Application", 2003, Conclusions, p. 138.
- [2] ASHRAE Standard 90.1-2016, Table 6.8.1-5, for warm air unit heaters.

Notes

- [1] Peak day factors and full load hours were developed by third-party engineers (Fuss & O'Neill, Manchester, Conn.) in 2008 using a temperature BIN analysis. The engineering analysis was provided to Eversource (natural gas), CNG, and SCG to help support natural gas conservation efforts.
- [2] In the case of a single-heater installation, the OF is 1.0. In the case of a multiple-heater installation, the total heater output capacity shall be used and the OF is 1.1.
- [3] The equivalent full load heating hour ("EFLH") range is shown in Table 2-DD. The magnitude of the EFLHs in each occupancy category considers both hours occupied and internal heat release equipment. Refer to Appendix Five for occupancy categories not listed in Table 2-DD.

2.2.8 Natural Gas-Fired Domestic Hot Water Heaters

Description of Measure

Installation of high-efficiency, natural gas-fired, storage-type, domestic hot water heaters > 75,000 Btu/hr.

Savings Methodology

Energy savings are calculated using proposed water heater thermal efficiency and standby losses versus baseline efficiency and standby losses. The baseline for efficiency and standby losses were based on natural gas storage water heater, > 75,000 Input Btu/hr as specified in 2012 IECC (**Ref [1]**).

Based on facility type and square footage, Table 2-GG (Note [1]) and baseline standby losses are used to estimate the annual water heating baseline usage. Using the baseline efficiency (80%) the baseline hot water load is calculated. Using the calculated load, the installed efficiency and standby high-efficiency consumption and savings can be calculated.

The demand savings is calculated using a demand savings factor, which is essentially the peak day consumption percent of the annual consumption. Multiplying annual savings by the demand savings factor determines the peak day savings.

Assumptions:

- 1. Base case heater is a code-compliant storage natural gas heater;
- 2. Proposed case heater is a high-efficiency heater;
- 3. Base case and proposed case heaters have the same output capacity and address the same domestic hot water ("DHW") load; and
- 4. If multiple heaters are used, they are treated as a single unit, with system input capacity and standby loss rate equal to the sum of all units.

Demand assumptions:

- 1. Lowest cold water temperature is 44°F (Ref [3]);
- 2. Annual average cold water temperature is 54°F (Ref [3]); and
- **3**. Hot water set point is 130°F.

Inputs

Table 2-EE: Inputs

Symbol	Description	Units
CAP _{H,i}	Input Capacity of Proposed (installed) Water Heater	MBH
CAP _{W,i}	Water Storage Capacity of Proposed (installed) Water Heater	Gallons
ηb	Thermal Efficiency of Base Case Water Heater	%
ηp	Thermal Efficiency of Proposed (installed) Water Heater	%
SLR _i	Standby Loss Rate of Proposed (installed) Water Heater	Btu/hr
А	Building Floor Area in Square Feet	ft²
	Building Occupancy Type	

Nomenclature

Description Values Symbol Units Comments ft² Building Floor Area in Square Feet А Input ACCF Annual Natural Gas Energy Savings ccf/yr CAP_{H,b} Heat Input Capacity of Base Case Water Heater MBH Heat Input Capacity of Proposed (installed) Water MBH CAP_{H,i} Input Heater Water Storage Capacity of Base Case Water Heater Gallons CAP_{W,b} Water Storage Capacity of Proposed (installed) Water Gallons CAP_{W,i} Input Heater $\mathsf{CCF}_{\mathsf{W},\mathsf{b}}$ Annual Base Case DHW Gas Usage ccf/yr ccf/ft²/yr Eь Annual Base Case Gas Energy Usage Rate (per ft²) Table 2-Ref [2], Note GG [1] Annual Proposed (installed) Gas Energy Usage Rate ccf/ft²/yr Ei (per ft²) GPYw Annual Building Hot Water Usage Gal/yr Number of Annual Standby Hours Hrs/yr Н PD Peak Day Natural Gas Savings ccf SF Peak Day Gas Demand Savings Factor **SLR**_b Base Case Water Heater Standby Loss Rate Btu/hr Ref [1], Note [1] Proposed (installed) Water Heater Standby Loss Rate Btu/hr SLR_i Input °F ΔT Differential Temperature Rise 75°F Base Case Water Heater Thermal Efficiency % 80% Ref [1] ηb Thermal Efficiency of Proposed Water Heater % ηp

Table 2-FF: Nomenclature

Lost Opportunity Gross Energy Savings, Fossil Fuel

Natural gas energy savings:

Calculate annual base case DHW natural gas usage:

$$CCF_{W,b} = A \times E_b$$

Table 2-GG: Annual Base Case Gas Usage Rate by Occupancy Type (Ref [2])

Building Occupancy Category	Annual Base Case Gas Usage Rate, E _b (Ccf/ft ²)
Education	0.068
Food Sales	0.043
Food Service	0.382
Health Care	0.232
Inpatient Health Care	0.334
Outpatient Health Care	0.038
Lodging	0.258
Mercantile	0.103
Retail (other than mall)	0.024
Enclosed and Strip Malls	0.137
Office	0.047
Public Assembly	0.02
Public Order and Safety	0.209
Service	0.147
Warehouse and Storage	0.028
Other	0.023
Vacant	0.013

Calculate base case heater input capacity in Btu/hr:

$$CAP_{H,b} = CAP_{H,i} \times \frac{\eta p}{\eta b}$$

Calculate the baseline standby losses:

$$SLR_b = CAP_{H,i} \times \frac{1,000}{800} + 110 \times \sqrt{CAP}_{w,i}$$
 Ref [1], Note [1]

Calculate number of standby hours/year:

$$H = \frac{(8760 \text{ }^{ht}\text{/}_{yr} \times CAP_{H,b} \times 1,000) - (CCF_{W,b} \times 102,900 \text{ }^{Btu}\text{/}_{Ccf})}{(CAP_{H,b} \times 1,000) - \frac{SLR_{b}}{\eta b}}$$

Calculate annual building hot water usage (gallons of hot water consumed/yr):

$$GPY_{W} = \frac{\left(CCF_{W,b} \times 102,900^{Btu}/_{Ccf} \times \eta b\right) - \left(SLR_{b} \times H\right)}{\Delta T \times 8.33^{Btu}/_{Gal^{\circ}F}}$$

Calculate annual natural gas savings using the following equation:

$$ACCF_{W} = CCF_{W,b} - \frac{(GPY_{W} \times \Delta T \times 8.33^{Btu}/_{Gal^{\circ}F} + SLR_{i} \times H)}{102,900^{Btu}/_{Ccf} \times \eta p}$$

Lost Opportunity Gross Energy Savings, Example

A 50,000 square foot inpatient health care facility installs a new energy-efficient natural gas storage type DHW heater with the following ratings:

- Capacity = 300 MBH;
- Storage capacity = 100 gallons;
- Thermal efficiency = 91%; and
- Rated standby loss = 1,044 Btu/hr.

What is the annual energy savings?

Calculate annual base case DHW natural gas usage:

$$CCF_{W,b} = A \times E_b = 50,000 \times 0.357 = 17,850Ccf$$

Calculate base case heater input capacity in Btu/hr:

$$CAP_{H,b} = CAP_{H,i} \times \frac{\eta p}{\eta b} = 300 \times \frac{0.91}{0.80} = 341 \text{ MBH}$$

Calculate the baseline standby losses:

$$SLR_{b} = CAP_{H,i} \times \frac{1,000}{800} + 110 \times \sqrt{CAP}_{w,i} = 300 \times \frac{1,000}{800} + 110 \times \sqrt{100} = 1,475$$

Calculate number of standby hours/year:

$$H = \frac{\left(8760 \frac{hr}{y_{yr}} \times CAP_{H,b} \times 1,000\right) - \left(CCF_{W,b} \times 102,900 \frac{Btu}{Ccf}\right)}{\left(CAP_{H,b} \times 1,000\right) - \frac{SLR_{b}}{\eta b}}$$
$$H = \frac{\left(8760 \frac{hr}{y_{yr}} \times 341 \times 1,000\right) - \left(17,850 \times 102,900 \frac{Btu}{Ccf}\right)}{\left(341 \times 1,000\right) - \frac{1,475}{0.80}} = 3,392$$

Calculate annual building hot water usage (gallons of hot water consumed/yr):

$$GPY_{W} = \frac{\left(CCF_{W,b} \times 102,900 \frac{Btu}{Ccf} \times \eta b\right) - \left(SLR_{b} \times H\right)}{\Delta T \times 8.33 \frac{Btu}{Gal^{\circ}F}}$$
$$GPY_{W} = \frac{\left(17,850 \times 102,900 \frac{Btu}{Ccf} \times 0.8\right) - \left(1,475 \times 3,392\right)}{75 \times 8.33 \frac{Btu}{Gal^{\circ}F}} = 2,343,992$$

Calculate annual natural gas savings using the following equation:

$$ACCF_{W} = CCF_{W,b} - \frac{(GPY_{W} \times \Delta T \times 8.33^{Btu}/_{Gal^{\circ}F} + SLR_{i} \times H)}{102,900^{Btu}/_{Cef} \times \eta p}$$
$$ACCF_{W} = 17,850 - \frac{(2,343,992 \times 75 \times 8.33^{Btu}/_{Gal^{\circ}F} + 1,044 \times 3,392)}{102,900^{Btu}/_{Cef} \times 0.91} = 2,173$$

Lost Opportunity Gross Peak Day Savings, Natural Gas

$$SF = \frac{1 \, day \times (130^{\circ}F - 46^{\circ}F)}{365 \, days \times (130^{\circ}F - 57^{\circ}F)} = 0.0032$$
$$PD = ACCF_{W} \times SF = ACCF_{W} \times 0.0032$$

Changes from Last Version

No changes.

References

- [1] 2015 IECC, Table C404.2.
- [2] US Energy Information Administration, Table E8. *Natural gas consumption and conditional energy intensities (cubic feet) by end use*, 2012, Rel. May 2016.
- [3] Tool for Generating Realistic Residential Hot Water Event Schedules, Reprint, NREL, Aug. 2010.

Notes

[1] For instantaneous hot water heaters, the SLR = 0.

2.3 MOTORS AND TRANSFORMERS

2.3.1 Low Voltage Dry Type Distribution Transformers

Description of Measure

Measure discontinued in 2017 due to implementation of a new Federal Energy Standard (**Ref [1]**) which makes potential savings negligible to support incentives for this program.

Savings Methodology

Not applicable (see above). Savings had been based on Consortium for Energy Efficiency ("CEE") Tier level efficiency requirements; however, the CEE Initiative has been suspended.

Changes from Last Version

Measure discontinued.

References

[1] Federal Standard: Title 10 Part 431 - Energy Efficiency Program for Certain Commercial and Industrial Equipment; Section 431.196.

2.4 VARIABLE FREQUENCY DRIVES

2.4.1 HVAC Variable Frequency Drives

Description of Measure

Addition of variable frequency drives ("VFDs") control to a fan or pump system in a HVAC application. The fan (pump) speed will be controlled to maintain the desired system pressure. The application must have a load that varies and proper controls (i.e., two-way valves, Variable Air Volume boxes) must be installed.

Savings Methodology

The baseline is a constant speed fan [Air Foil ("AF"), Backward Inclined ("BI"), and Forward Curved ("FC")] with or without inlet guide vanes or a constant speed/flow centrifugal pump. ASHRAE default performance curves (**Ref [1]**) are utilized to calculate the power for both the baseline equipment (constant speed) and the proposed equipment (variable speed) over the annual load profile. The difference between the base and proposed equipment determines the energy savings. Demand savings is the power (kW) savings at the highest load temperature BINs.

Inputs

Symbol	Description	
BHP	Brake Horsepower	
EFFi	Installed Motor Efficiency	
Н	Annual Hours of Operation	
	Fan Type	

Table 2-HH: Inputs

Nomenclature

Table 2-II: Nomenclature

Symbol	Description	Units	Values	Comments
AF	Air Foil Fan			Fan Type
AKWH	Gross Annual Electric Energy Savings	kWh		
BHP	System Brake Horsepower	HP		
BI	Backward Incline Fan			Fan Type
CHWP	Chilled Water Pump			
CV	Constant Volume Fan			
EFFi	Motor Efficiency - Installed	%		
FC	Forward Curved Fan			Fan Type
Н	Annual Hours of Operation			Site specific or
				default, Appendix
				Five
HWP	Hot Water Pump			
IGV	Inlet Guide Vanes			Flow Control Device
SF_{kWh}	Annual Kilowatt-Hour Savings Factor Based	(kW/HP)	Table	
	on Typical Load Profile for Application		2-JJ	
SF _{kW,S}	Summer Seasonal Demand Savings Based on	(kW/HP)	Table	
	Typical Load Profile for Application		2-JJ	
SF _{kW,W}	Summer Seasonal Demand Savings Based on	(kW/HP)	Table	
	Typical Load Profile for Application		2-JJ	
SKW	Seasonal Summer Peak Savings	kW		
WKW	Seasonal Winter Peak Savings	kW		

Lost Opportunity Gross Energy Savings, Electric

$$AKWH = \frac{BHP}{EFF_i} \times H \times SF_{kWh}$$

<u>Note</u>: Refer to Table 2-JJ for the appropriate SF_{kWh} .

HVAC Fan VFD Savings Factors				
Baseline	SF _{kWh}	SF _{kW,S}	SF _{kW,W}	
AF/BI Riding the Curve	0.35407485	0.26035565	0.40781240	
AF/BI with IGV	0.22666226	0.12954823	0.29144821	
FC Riding the Curve	0.17889831	0.13552275	0.18745625	
FC with IGV	0.09210027	0.02938371	0.13692166	
CV	0.53450577	0.34753664	0.65064177	
CHWP (constant flow)	0.41113751	0.299056883	0.0	
HWP (constant flow)	0.42380136	0.0	0.207967853	

Table 2-JJ: VFD Savings Factors (See Note [1])

Lost Opportunity Peak Seasonal Demand Savings, Electric (winter and summer)

$$SKW = \frac{BHP}{EFF_i} \times SF_{kW,S}$$

$$WKW = \frac{BHP}{EFF_i} \times SF_{kW,W}$$

Changes from Last Version

No changes.

References

[1] ASHRAE 90.1-1989 User's Manual.

Notes

[1] The constants in Table 2-JJ were derived using a temperature BIN spreadsheet and typical heating, cooling, and fan load profiles. For each pump application and fan type savings factors were developed. These were based on the difference in power based on the estimated load at each temperature BIN using equations from **Ref** [1].

2.6 OTHER

2.6.1 Lean Manufacturing

Description of Measure

Incorporating Process Re-engineering for Increased Manufacturing Efficiency ("PRIME"), also known as "lean manufacturing," into the manufacturing process.

Savings Methodology

Incorporating PRIME in the manufacturing process allows a company to eliminate waste (i.e., of energy, materials, and labor) and optimize flow in order to improve the efficiency of the manufacturing process. The savings calculations are based on **Ref [1]**. Savings are estimated based on facility's existing actual annual electrical usage. The savings are based on estimating the production increase with and without PRIME.

Savings are based on two concepts:

- 1. Producing more products in the same time period saves on the non-manufacturing consumption (mostly lighting); and
- 2. Producing more products over the same time period reduces losses in the manufacturing equipment consumption (e.g., such as less idle time and an increase in motor efficiency).

The PRIME process also reduces waste. Since this is very site-dependent, it is not considered in this calculation.

For projects with natural gas savings, the calculations will be done on a case-by-case basis for each customer's specific manufacturing process(es).

Inputs

Symbol	Description	Units
KWH _h	Facility's Annual Consumption Based on Billing History	kWh
PPA	PA Percent of Facility's Consumption Affected by PRIME	
Na	Production after PRIME	Units per Hour
Ne	Existing Production	Units per Hour

Table 2-KK: Inputs

Nomenclature

Table 2-LL: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH	Annual Electric Energy Savings	kWh		
EKWH	Estimated Annual Electric Usage with an Increase in	kWh		
	Production			
IND	Annual Electric Energy Usage Independent of	kWh		
	Production Hours and Production Quantity			
HR	Annual Electric Energy Usage Dependent on Hours of	kWh		
	Production			
KWH _h	Facility's Annual Electric Usage Based on Billing	kWh		Input
	History			
Na	Production Rate After PRIME	Units per		Input
		hour		
Ne	Existing Production Rate	Units per		Input
		hour		
PPA	Percent of Facility's Energy Usage Affected by PRIME	%		Input
PD	Annual Electric Energy Usage Dependent on	kWh		
	Production Quantity			
SF	Savings Factor	%		Ref [1]
···wop	Without PRIME			
wp	With PRIME			

Lost Opportunity Gross Energy Savings, Electric

$$AKWH = EKWH_{wop} - EKWH_{wp}$$

Estimated annual consumption with increase in productivity without PRIME:

$$\begin{split} EKWH_{wop} &= IND_{wop} + HR_{wop} + PD_{wop} \\ IND_{wop} &= 0.65 \times PPA \times KWH_h \\ HR_{wop} &= 0.20 \times PPA \times KWH_h \times \frac{N_a}{N_e} \\ PD_{wop} &= 0.15 \times PPA \times KWH_h \times \frac{N_a}{N_e} \end{split}$$

Estimated annual consumption with increase in productivity with PRIME:

$$EKWH_{wp} = IND_{wp} + HR_{wp} + PD_{wp}$$

$$IND_{wp} = 0.65 \times PPA \times KWH_h$$

$$HR_{wp} = 0.20 \times PPA \times KWH_h$$

$$PD_{wp} = 0.15 \times PPA \times KWH_h \times \frac{N_a}{N_e} \times (1 - SF)$$

$$SF = 0.1168 \times \left[\frac{N_a - N_e}{N_e}\right]^3 - 0.3402 \times \left[\frac{N_a - N_e}{N_e}\right]^2 + 0.4732 \times \left[\frac{N_a - N_e}{N_e}\right] + 0.0011$$

Savings algorithms come directly from Ref [1].

Lost Opportunity Gross Energy Savings, Example

A manufacturing plant that has an annual electricity consumption of 1,000,000 kWh (KWH_h) goes though the PRIME process on production lines that represent 25% or 0.25 ("PPA") of their production. Production of those lines increase from 300 to 330 products per hour.

$$AKWH = EKWH_{wop} - EKWH_{wp}$$

Estimated annual consumption with increase in productivity without PRIME:

$$EKWH_{wop} = IND_{wop} + HR_{wop} + PD_{wop}$$
$$IND_{wop} = 0.65 \times 0.25 \times 1,000,000 = 162,500 kWh$$
$$HR_{wop} = 0.20 \times 0.25 \times 1,000,000 \times \frac{330}{300} = 55,000 kWh$$
$$PD_{wop} = 0.15 \times 0.25 \times 1,000,000 \times \frac{330}{300} = 41,250 kWh$$
$$EKWH_{wop} = 162,500 + 55,000 + 41,250 = 258,750 kWh$$

2019 Program Savings Document

Estimated annual consumption with increase in productivity with PRIME:

$$EKWH_{wp} = IND_{wp} + HR_{wp} + PD_{wp}$$

$$IND_{wp} = 0.65 \times 0.25 \times 1,000,000 = 162,500kWh$$

$$HR_{wp} = 0.20 \times 0.25 \times 1,000,000 = 50,000kWh$$

$$SF = 0.1168 \times \left[\frac{330 - 300}{300}\right]^3 - 0.3402 \times \left[\frac{330 - 300}{300}\right]^2 + 0.4732 \times \left[\frac{330 - 300}{300}\right] + 0.0011 = .045$$

$$PD_{wp} = 0.15 \times 0.25 \times 1,000,000 \times \frac{330}{300} \times (1 - 0.045) = 39,394kWh$$

$$EKWH_{wp} = 162,500 + 50,000 + 39,394 = 251,894kWh$$

$$AKWH_{o} = 258,750 - 251,894 = 6,856kWh$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

- SKW = 0; and
- WKW = 0.

Non-Energy Impacts

PRIME reduces waste and increases productivity. The customer's cost savings from the increase in productivity and reduction in scrap varies considerably from project to project. Therefore, it may be calculated on a case-by-case basis.

Changes from Last Version

No changes.

References

[1] Process Reengineering for Increased Manufacturing Efficiency (PRIME) Program Evaluation, Energy & Resource Solutions, Mar. 26, 2007, Section 4.

2.6.2 Commercial Kitchen Equipment

Description of Measure

Installation of ENERGY STAR-qualified commercial kitchen equipment.

Savings Methodology

Energy savings for this measure are calculated using the savings calculator for ENERGY STAR-qualified commercial kitchen equipment located on the ENERGY STAR website (**Ref [1]**). Note that the input and equipment tabs within the spreadsheet have default values that can be overridden by the user when project specific details are available. The peak electric and natural gas demand savings are calculated as specified below. The baselines from which savings are calculated are provided in Table 2-MM below.

Table 2-MM: Savings Baseline

Equipment	Baseline
Oven	Conventional Unit per Ref [1] Calculator
Dishwasher	Conventional Unit per Ref [1] Calculator
Freezer	Ref [3]
Fryer	Conventional Unit per Ref [1] Calculator
Griddle	Conventional Unit per Ref [1] Calculator
Hot Food Holding Cabinet	Conventional Unit per Ref [1] Calculator
Ice Machine	Ref [1]
Refrigerator	Ref [2]
Steam Cooker	Conventional Unit per Ref [1] Calculator
WaterSense Pre-Rinse Spray Valve	See Water-Saving Measures 3.2.1

Nomenclature

Table 2-NN: Nomenclature

Symbol	Description	Units	Values	Comments
ACCFo	Annual Natural Gas Savings	ccf		
AHAM	Association of Home Appliance			
	Manufacturers			
AKWH	Annual Gross Electric Energy Savings	kilowatt-hours, kWh		
AKW	Average Hourly Summer Demand	kW		
	Savings			
kW	Electric Demand	kilowatts		
PDo	Peak Day Natural Gas Savings	ccf		

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

The average hourly demand savings for refrigerators, freezers and ice machines (winter and summer) are:

$$AKW = \frac{AKWH}{8760 \frac{hrs}{yr}}$$

Lost Opportunity Gross Peak Demand Savings, Natural Gas

$$PD_{O} = \frac{ACCF_{O}}{365 days / yr}$$

Changes from Last Version

• Updated the web link to the ENERGY STAR savings calculator.

References

- ENERGY STAR Commercial Kitchen Package for businesses and operators, <u>https://energy.gov/eere/femp/energy-and-cost-savings-calculators-energy-efficient-products</u> Last Accessed Jun. 3, 2018.
- [2] Federal Standard: Title 10 Part 431 Energy Efficiency Program for Certain Commercial and Industrial Equipment; Section 431.66.

Notes

- [1] The AHAM volume is the interior volume of a refrigerator as calculated by AHAM Standard Household Refrigerators/Household Freezers (ANSI/AHAM HRF-1-2004).
- [2] Actual full load hours should be used (when known) in the ENERGY STAR savings calculator, in lieu of the default hours.

2.6.3 Lost Opportunity Custom

Description of Measure

This measure may apply to any C&I Lost Opportunity installations whose scope may be considered custom or comprehensive and not covered by a prescriptive measure.

Savings Methodology

Energy and demand savings are calculated on a custom basis for each customer's specific situation. Savings are calculated as the difference between baseline energy usage/peak demand and the energy use/peak demand after implementation of the custom measure. Energy savings estimates should be calibrated against billing or metered data where possible to test the reasonableness of energy savings. Also, the energy and demand savings analysis must be reviewed for reasonableness by either a thirdparty consulting engineer or a qualified in-house engineer.

The methodology for determining natural gas peak day savings is provided in Appendix One.

<u>Note:</u> The demand savings methodologies below provide a gross, reasonable estimate based on available information. Final reported values are adjusted based on realization rates provided in Appendix Three.

Electric demand savings methodologies are categorized as follows:

- 1. Temperature-dependent measures (e.g., HVAC measures that vary with ambient temperature);
- 2. Non-temperature dependent measures (e.g., process, lighting, time control); and
- **3.** Whole building performance.

Temperature dependent measures:

Savings from individual temperature dependent measures are typically determined by either full-load hour analysis or BIN temperature analysis.

Full load hour analysis:

Summer and winter demand savings are calculated using an appropriately derived seasonal peak coincidence factor. Coincident factors for various measures (and/or end use) are provided in Appendix One. Demand savings will be determined by multiplying the connected load kW savings by the appropriate coincidence factor.

Temperature BIN analysis:

A correlation was done between seasonal peak hours and outside air temperatures. Using this information, the methodology was developed as described below. Typically, either Bridgeport or Hartford weather data is used for the analysis.

- The summer seasonal peak demand savings shall be the difference between the weighted average demand of the top temperature BINs that capture the majority of the ISO-NE summer seasonal peak hours in the previous three years, for the base and "efficient" cases. All hours above 80 degrees will be used for Bridgeport and 84 degrees will be used for Hartford.
- The winter seasonal peak demand savings shall be the difference between the weighted average demand of the bottom temperature BINs that capture the majority of the ISO-NE winter seasonal peak hours in the previous three years, for the base and "efficient" cases. All hours below 30 degrees will be used for Bridgeport and 26 degrees will be used for Hartford.

Non-temperature dependent measures:

Demand savings for measures that are not temperature-dependent will be determined by either the coincidence factors from Appendix One or the average estimated week day ("WD") savings over the summer or winter seasonal peak period. A custom coincidence factor may also be used for measures or end uses that are not identified in Appendix One. However, the analysis determining the custom coincidence factor must be performed or approved by a qualified in-house engineer.

The average summer and winter seasonal peak demand savings shall be determined as follows:

$$SKW = \frac{Annual \ kWh \ savings \ (WD - June, July, August)}{Equipment \ Run \ hours \ (WD - June, July, August)} \times \left(\frac{Run \ hours \ during \ 12 \ pm - 6 \ pm \ WD}{6}\right)$$
$$WKW = \frac{Annual \ kWh \ savings \ (WD - December, January)}{Equipment \ Run \ hours \ (WD - December, January)} \times \left(\frac{Run \ Hours \ during \ 4 \ pm - 9 \ pm \ WD}{5}\right)$$

<u>Note</u>: The average demand savings methodology should only be used when the coincident factor methodology cannot be used or is not practicable.

Whole building performance:

Whole building performance shall be determined using a computer simulation model. Approved software and modeling requirements are specified by the Companies' program administrators.

The methodology for determining the seasonal peak demand savings will depend on the computer simulation output capabilities. If the model can provide the demand for the coldest and hottest hours of the year and the month when they occur, then that data will be used to determine demand savings.

The summer seasonal peak demand savings will be the difference between the peak demand (whole building) from the base and design models during the hottest hours as described in the temperature dependent section above. This assumes the hottest hours occur during June, July, and August. If the hottest hour methodology cannot be used then the demand savings shall be determined by taking the average summer (i.e., June, July, and August) peak demand from the base model and subtracting the average summer (i.e., June, July, and August) peak demand from the design model.

The winter seasonal peak demand savings will be the difference between the peak demand (whole building) from the base and design models during the coldest hours as described in the temperature dependent section above. This assumes the coldest hours occur during December or January. If the coldest hour methodology cannot be used then the demand savings shall be determined by taking the average winter (i.e., December and January) peak demand from the base model and subtracting the average winter (i.e., December and January) peak demand from the design model.

Baseline:

Baseline efficiencies for individual measures are based on code or federal standards. If there is no applicable code requirement, the assumption would be that no installation of any energy-saving measure unless there was a study based on a statistically valid sample of similar installations to support a different baseline. If projects are initiated after the new code adoption, then 2015 IECC Table C407.5.1(1) must be used to evaluate the energy savings or as applicable codes and standards.

Nomenclature

Symbol	Description	Units	Values	Comments
WD	Week Days	Days		

Table 2-00: Nomenclature

Changes from Last Version

• 2015 IECC Language change.

2.6.4 Commercial Clothes Washers

Description of Measure

The installation of an ENERGY STAR commercial clothes washer.

Savings Methodology

Savings for this measure are calculated using the appropriate water heating and dryer fuel source. The basis of the savings is the CEE savings calculator (**Ref [1]**). The usage per load by fuel source for baseline (Federal Standard) and ENERGY STAR units were calculated based on (**Ref [1]**). Using the average loads per year the annual savings are calculated. Number of annual loads will either be based on the CEE default calculator default values (i.e., Laundromats (2,190 loads per year) or Multi-Family (1,241 Loads per year)) or project specific information for any facility type. Installed energy use will be based on the installed modified energy factor.

Note that the Federal Standard and ENERGY STAR requirements changed in 2013. There are now separate Federal Standard levels for front loading and top loading washers. The CEE savings calculator (**Ref [1]**) used for this measure was modified based on the new Federal Standard and ENERGY STAR requirements.

Table 2-PP: Inputs

Symbol	Description	Units
Ν	Number of Units	
	Water Heating Fuel Source (i.e., electric, natural gas, propane, or oil)	
	Dryer Fuel Source (i.e., none, electric, natural gas, or propane)	
	Type of Facility (i.e., Laundromat or Multi-Family)	
MEFi	Modified Energy Factor - Installed	ft ³ /kWh/cycle
LDS	Average Number of Loads per Week	Loads/wk
WK	Average Number of Weeks per Year	wk/yr

Inputs

Nomenclature

Table 2-QQ: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH	Annual Electric Energy Savings	kWh		
AKWH ₀	Annual Electric Energy Savings – Other	kWh		
AKWH _w	Annual Electric Energy Savings – Water	kWh		
	Heating			
ABTUo	Annual Btu Savings - Other	Btu		
ABTUw	Annual Btu Savings – Water Heating	Btu		
ACCF	Annual Natural Gas Savings - Total	ccf		
ACCFo	Annual Natural Gas Savings - Other	ccf		
ACCFw	Annual Natural Gas Savings – Water Heating	ccf		
APG	Annual Propane Savings - Total	Gallons		
APGo	Annual Propane Savings - Other	Gallons		
APGw	Annual Propane Savings – Water Heating	Gallons		
AOGw	Annual Oil Savings – Water Heating	Lbs/h		
DKWH _b	Dryer kWh per Load - Baseline	kWh/ld	0.872/	Note [1]
			0.698	
DKWH _{es}	Dryer kWh per Load – ENERGY STAR	kWh/ld	0.634	Note [1]
DRBTU _b	Dryer Btu - Baseline	Btu/ld	2,969/	Note [1]
			2,376	
DRBTU _{es}	Dryer Btu – ENERGY STAR	Btu/ld	2,160	Note [1]
AGW	Annual Water Savings	Gallons/year		
Gal _b	Gallons of Water - Baseline	Gallons	26.35/	Note [1]
			17.1	
Gal _{es}	Gallons of Water – ENERGY STAR	Gallons	13.95	Note [1]
LDS	Average Number of Loads per Week	Loads/wk		Input, Note
				[2]
MEFi	Modified Energy Factor - Installed	ft ³ /kWh/cycle		Input
MEF _{es}	Modified Energy Factor – ENERGY STAR	ft ³ /kWh/cycle	2.2	Note [1]
Ν	Number of Units			Input
PDw	Peak Day Factor – Water Heating		0.00321	Appendix
				One
PD	Peak Day Savings	ccf		
WK	Average Weeks per Year	Wk/yr		Input
WKWH _b	Washer kWh per Load - Baseline	kWh/ld	0.116/	Note [1]
			0.093	

Lost Opportunity Gross Energy Savings, Electric

Electric savings will be calculated in three pieces. Electric dryer and water heating savings are present only if the heat element fuel source is electric.

Annual Savings = Washer Savings + Water Heating Savings + Dryer Savings

 $AKWH = AKWH_{O-washer} + AKWH_{O-eletricdryer} + AKWH_{W-electric}$

$$AKWH = N \times LDS \times WK \times \begin{bmatrix} \left(WKWH_b - WKWH_{es} \times \frac{MEF_{es}}{MEF_i} \right) + \left(WHKWH_b - WHKWH_{es} \times \frac{MEF_{es}}{MEF_i} \right) \\ + \left(DKWH_b - DKWH_{es} \times \frac{MEF_{es}}{MEF_i} \right) \end{bmatrix}$$

Lost Opportunity Gross Energy Savings, Fossil Fuel

Fossil fuel savings will be calculated in two pieces. Fossil fuel dryer and water heating savings are only present if the heat element fuel source is a fossil fuel.

Annual Savings = Water Heating Savings + Dryer Savings

$$ABTU = ABTU_{O-FossilFueldryer} + ABTU_{W-fossilfuel}$$

$$\begin{split} ABTU_{W} &= N \times LDS \times WK \times \left(WHBTU_{b} - WHBTU_{es} \times \frac{MEF_{es}}{MEF_{i}} \right) \\ ABTU_{O} &= N \times LDS \times WK \times \left(DRBTU_{b} - DRBTU_{es} \times \frac{MEF_{es}}{MEF_{i}} \right) \end{split}$$

Savings by Fuel Source

Water heating:

$$ACCF_{W} = \frac{ABTU_{W}}{102,900Btu/ccf}$$
$$AOG_{W} = \frac{ABTU_{W}}{138,690Btu/Gal}$$

$$APG_W = \frac{ABTU_W}{91,330Btu/Gal}$$

Dryer:

$$ACCF_{O} = \frac{ABTU_{O}}{102,900Btu/ccf}$$
$$APG_{O} = \frac{ABTU_{O}}{91,330Btu/Gal}$$

Lost Opportunity Gross Energy Savings, Example

A new Laundromat installs 25 new ENERGY STAR front loading washing machines that have a MEF of 2.2. The Laundromat has natural gas water heat and gas dryers. What is the energy savings?

Electric savings:

$$AKWH = N \times LDS \times WK \times \begin{bmatrix} \left(WKWH_b - WKWH_{es} \times \frac{MEF_{es}}{MEF_i} \right) + \left(WHKWH_b - WHKWH_{es} \times \frac{MEF_{es}}{MEF_i} \right) \\ + \left(DKWH_b - DKWH_{es} \times \frac{MEF_{es}}{MEF_i} \right) \end{bmatrix}$$

- Dryer and Water Heater Electric Usage = 0;
- N = 25;
- LDS x WK = 2,190 (default loads per year);
- WKWH_b = 0.093 kWh/ld;
- WKWH_{es} = 0.085 kWh/ld;
- MEF_{es} = 2.2; and
- MEF_i = 2.2.

$$AKWH = 25 \times 2,190 \times \left[\left(0.093 - 0.085 \times \frac{2.2}{2.2} \right) + \left(0 - 0 \right) + \left(0 - 0 \right) \right] = 438kWh$$

Natural gas savings:

$$ABTU = ABTU_{O-FossilFueldryer} + ABTU_{W-fossilfuel}$$

$$\begin{split} ABTU_W &= N \times LDS \times WK \times \left(WHBTU_b - WHBTU_{es} \times \frac{MEF_{es}}{MEF_i}\right) \\ ABTU_W &= 25 \times 2,190 \times \left(2,597 - 2,361 \times \frac{2.2}{2.2}\right) = 12,921,000Btus \\ ACCF_W &= \frac{ABTU_W}{102,900Btu/ccf} = \frac{12,921,000Btus}{102,900Btu/ccf} = 125.6Ccfs \end{split}$$

$$ABTU_{o} = N \times LDS \times WK \times \left(DRBTU_{b} - DRBTU_{es} \times \frac{MEF_{es}}{MEF_{i}}\right)$$

$$ABTU_{o} = 25 \times 2,190 \times \left(2,376 - 2,160 \times \frac{2.2}{2.2}\right) = 11,826,000Btus$$

$$ACCF_{o} = \frac{ABTU_{o}}{102,900Btu / ccf} = \frac{11,826,000Btus}{102,900Btu / ccf} = 115Ccfs$$

$$ACCF = ACCF_{o} + ACCF_{WI} = 125.6 + 115 = 240.6Ccfs$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

Assumed to be zero.

Lost Opportunity Gross Peak Day Savings, Natural Gas

$$PD = \frac{ACCF_O}{365 days / yr} + PD_W \times ACCF_W$$

Lost Opportunity Gross Peak Day Savings, Example

$$PD = \frac{ACCF_{O}}{365 days / yr} + PD_{W} \times ACCF_{W} = PD = \frac{115}{365 days / yr} + 0.00321 \times 125.6 = 0.72Ccfs$$

Non-energy impacts:

ENERGY STAR washers use less water than the base unit.

Water savings:

$$AGW = N \times LDS \times WK \times \left(GAL_b - GAL_{es} \times \frac{MEF_{es}}{MEF_i}\right)$$

Changes from Last Version

No changes.

References

[1] Available at: <u>https://energy.gov/eere/femp/energy-and-cost-savings-calculators-energy-</u> <u>efficient-products</u>. Modified based on 2013 Federal Standard and ENERGY STAR requirements.

Notes

- [1] Baseline (top loading/front loading) and ENERGY STAR usage values used in energy savings calculation tool on website identified in **Ref** [1].
- [2] Default loads per year for Laundromats and Multi-Family from Ref [1].

2.7 ENVELOPE

2.7.1 Cool Roof

Description of Measure

Install a qualifying cool roof surface with high reflectance (Note [4]) and high emittance (Note [5]).

Savings Methodology

Wood, Byk and Associates (**Note [1**]) developed a number of typical HVAC system scenarios using the hourly building simulation tool DOE-2. Savings were calculated using a baseline reflectance of 0.3 (**Note [2**]), a high-efficiency roof reflectance of 0.70, and a high-efficiency roof emittance of 0.75, as certified and labeled by the Cool Roof Rating Council ("CRRC"). Simulation results were separated into two categories based on the location of the cooling equipment's condenser. Based on the study's results, savings ratios were developed per square foot of "cool" roof over electrically-air conditioned space, which can be applied to estimate energy savings. The reflectance and emittance requirements are in the 2015 IECC (**Note [6]**, **Ref [1]**).

Inputs

Symbol	Description	Units
	Location of Air Conditioning Systems (Rooftop vs. Other)	
	Heating Fuel	
A _{ac}	Area of Upgraded Roof that is Over Electrically-Air	ft²
	Conditioned Spaces	

Table 2-RR: Inputs

Nomenclature

Table 2-SS: Nomenclature

Symbol	Description	Units	Values	Comments
A _{ac}	Area of Upgraded Roof that is Over Electrically Air	ft ²		Input
	Conditioned Spaces			
ABTU _H	Annual Btu Savings – Heating	Btu		
ACCF _H	Annual Natural Gas Savings – Heating	CCF	102,900 Btu	
AKWH _C	Annual Electric Energy Savings – Cooling	kWh		
AOG _H	Annual Oil Savings – Heating	Gal	138,690 Btu	
APG _H	Annual Propane Savings – Heating	Gal	91,330 Btu	
Fc	Cooling Factor	kWh/ft ²	0.29872 or	Note [3]
			0.08145	
F _H	Heating Factor	Btu/ft ²	-17000	Note [3]
SKF	Summer Factor	kW/ft ²	0.00045 or	Note [3]
			0.00019	
SKW	Seasonal Summer Peak Demand Savings	kW		
WKW	Seasonal Winter Peak Demand Savings	kW		

Lost Opportunity Gross Energy Savings, Electric

When air conditioning equipment is located on the roof (e.g., rooftop units, split systems, and air-cooled chillers), the savings are calculated as follows:

 $F_{C} = 0.29872$ $AKWH_{C} = F_{C} \times A_{ac}$ $AKWH_{C} = 0.29872 \times A_{ac}$

<u>Reminder</u>: This does not include cooling towers that serve water-cooled chillers. Water-cooled chillers are grouped with cooling equipment that is not located on the roof. When air conditioning equipment is not located on the roof (e.g., split systems, air-cooled chillers, and water-cooled chillers), the savings are calculated as follows:

$$F_{C} = 0.08145$$
$$AKWH_{C} = F_{C} \times A_{ac}$$
$$AKWH_{C} = 0.08145 \times A_{ac}$$

Lost Opportunity Gross Energy Savings, Fossil Fuel

$$F_{H} = -17000$$

$$ABTU_{H} = F_{H} \times A_{ac}$$

$$ABTU_{H} = -17000 \times A_{ac}$$

$$ACCF_{H} = \frac{ABTU_{H}}{102,900 \ btu/Ccf}$$

$$AOG_{H} = \frac{ABTU_{H}}{138,690 \ btu/gal}$$

$$APG_{H} = \frac{ABTU_{H}}{91,330 \ btu/gal}$$

<u>Reminder</u>: Increasing the reflectance of a roof causes an increase in heating energy usage (thus the negative factor above) because it will decrease the temperature of the roof which will result in higher heating loads.

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (Winter and Summer)

When air conditioning equipment is located on the roof (e.g., rooftop units, split systems, and aircooled chillers), the demand savings are as follows:

$$SKF_{C} = 0.00045$$
$$SKW_{C} = SKF_{C} \times A_{ac}$$
$$SKW_{C} = 0.00045 \times A_{ac}$$
$$WKW_{C} = 0$$

<u>Reminder</u>: This does not include cooling towers that serve water-cooled chillers. Water-cooled chillers are grouped with cooling equipment that is not located on the roof. When air conditioning equipment is not located on the roof (e.g., split systems, air-cooled chillers, water-cooled chillers), the savings are as follows:

$$SKF_{C} = 0.00019$$
$$SKW_{C} = SKF_{C} \times A_{ac}$$
$$SKW_{C} = 0.00019 \times A_{ac}$$
$$WKW_{C} = 0$$

Changes from Last Version

• Added Ref [1].

Notes

- [1] Wood, Byk, & Associates, Consulting Engineers, 829 Meadowview Road, Kennett Square, PA 19348.
- [2] ASHRAE 90.1-2001, Energy Cost Budget Method.
- [3] Results from the modeling done by Wood, Byk, and Associates.
- [4] Reflectance: Solar reflectance is the portion of the sun's radiation that is reflected by the surface.
- [5] Emittance is the ability of a surface to radiate heat.
- [6] If new code is adopted, cool roof savings will be determined on a project-by-project basis.

References

[1] 2015 IECC Table C407.5.1(1): Specifications for the Standard Reference and Proposed Designs.

This page intentionally blank.

SECTION THREE: C&I RETROFIT

3.1 LIGHTING

3.1.1 Standard Lighting

Description of Measure

Replacement of inefficient lighting with efficient lighting.

Savings Methodology

The energy and seasonal peak demand savings come from reduced fixture wattage, reduced cooling load, and use of occupancy sensors. The baseline is the wattage and existing operating hours of the fixtures being replaced. Note [1].

The heat emitted by lighting will be reduced by the installation of more efficient lighting and, if sensors are installed, lower hours of use. This will result in increased space heating energy use and decreased cooling energy use.

Inputs

Table 3-A: Inputs

Symbol	Description	Units
kW _B	Existing Fixture Connected kW	
kWA	Replacement Fixture Connected kW	
	Hours of Operation (if available)	

Nomenclature

Table 3-B: Inputs

Item	Description	Units	Values	Comments
AKWH	Annual Gross Electric Energy Savings	kWh		
CFL	Lighting Coincidence Factor from Appendix One			Appendix One
CFos	Occupancy Sensor Coincidence Factor from Appendix One			Appendix One
COP	Coefficient of Performance		3.5	
F	Fraction of Lighting Energy that Must be Removed by the Facility's Cooling System			
G	Estimated Lighting Energy Heat to Space Based on Modeling		0.73	Note [3]
Н	Facility Lighting Hours of Use	Hours		Site Specific or Appendix Five
HVAC	Heating, Ventilation and Air Conditioning			
kW	Fixture Input	kW		
kW	Electric Demand	kW		
Ν	Number of Different Fixture Types with Occupancy Sensors			
n	Fixture Number			
On	Quantity of Fixtures of Type n that have Occupancy Sensors			
Sr	Energy Savings due to Lighting Retrofit	kWh		
S _{os}	Energy Savings from Use of Occupancy Sensors, if applicable	kWh		
S _c	Energy Savings from Reduced Cooling Load	kWh		
SKW	Seasonal Summer Peak Summer Demand Savings	kW		
Wn	Input Watts for Fixture Type n	Watts		
WKW	Seasonal Winter Peak Summer Demand Savings	kW		

Retrofit Gross Energy Savings, Electric

$$AKWH = S_r + S_{OS} + S_C$$

Calculation of savings due to fixture retrofit:

$$S_r = (kW_B - kW_A) \times H$$

- **kW**_B = The total power usage of the lighting fixtures that are being replaced, kW. For Energy Independence and Security Act ("EISA")-qualifying bulbs, 75% of the actual wattage is used for the baseline. See **Note** [1]).
- kW_A = The total power usage of the new lighting fixtures that are being installed, kW.

• H = Facility lighting hours of use (site specific or Appendix Five).

Calculation of savings due to occupancy sensors:

$$S_{os} = \frac{0.3H}{1000} \sum_{n=1}^{N} O_n W_n$$

- 0.3 is the generally accepted average hour reduction due to the use of occupancy sensors (**Ref** [1]).
- Additional savings maybe claimed if lighting fixtures have multiple controls (e.g. daylighting, personal tuning or institutional tuning) and or integrated controls.

Calculation of savings to remove excess heat produced by the new lighting fixtures. This is due to the reduced cooling required as the result of putting the new lighting in place:

$$S_C = \frac{\left(S_r + S_{OS}\right) \times F}{COP}$$

- F = Fraction of annual kWh energy savings that must be removed by the cooling system. If the HVAC system includes an economizer, then F = 0.35. Otherwise, use Table 3-C.
- COP = 3.5 (Note [2]).

Table 3-C: Fraction of Lighting Energy that Must Be Removed by Facility's Cooling System (Ref [2])

Building Area, A, ft ²	F
< 2,000	0.48
2,000 – 20,000	$0.48 + \frac{0.195(A - 2,000)}{18,000}$
> 20,000	0.675

Retrofit Gross Energy Savings, Fossil Fuel

Space heating energy consumption will increase due to reduced lighting load (cooler lighting fixtures).

- Annual Oil Savings = -0.0007129 MMBtu per annual kWh saved; and
- Annual Natural Gas Savings = -0.0003649 MMBtu per kWh. See (Ref [3]).

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

$$SKW = \left(CF_L \times \left(\sum kW_B - \sum kW_A \right) + CF_{OS} \times \frac{\sum_{n=1}^N O_n W_n}{1000} \right) \times \left(1 + \frac{G}{COP} \right)$$
$$WKW = CF_L \times \left(\sum kW_B - \sum kW_A \right) + CF_{OS} \times \frac{\sum_{n=1}^N O_n W_n}{1000}$$

- **CF**_L and **CF**_{os} are the lighting (CF_L) and occupancy sensor (CF_{os}) coincidence factors (summer/winter) taken from Appendix One.
- **G** = 0.73 (Note [3])
- COP = 3.5 (Note [2])

Non-Energy Impacts

O&M savings due to the installation of new equipment.

Changes from Last Version

• Note on lighting controls.

References

- [1] D. Maniccia B. Von Neida, and A. Tweed. An analysis of the energy and cost savings potential of occupancy sensors for commercial lighting systems. Illuminating Engineering Society of North America 2000 Annual Conference: Proceedings. IESNA: New York, NY, pp. 433-459. Accessed online at: <u>http://www.lrc.rpi.edu/resources/pdf/dorene1.pdf</u>.
- [2] "The source of the equation for S_c and the derivation of the values for F is from "Calculating Lighting and HVAC Interactions," ASHRAE Journal, pp. 11-93 as used by KCPL.
- [3] Massachusetts Technical Reference Manual, 2012 Program Year, p. 170.

Notes

- [1] To account for the EISA of 2007 the baseline for existing (installed) General Service bulbs shall be based on high-efficiency incandescent bulbs (such as halogen). Therefore, if the existing incandescent bulb is not a halogen, 75% of actual installed wattage is used for the baseline calculation. General Service bulbs are defined as medium base bulbs that are intended for general service applications as specified in the EISA of 2007.
- [2] Estimated based on Connecticut Code.

3.1.1 Standard Lighting

[3] An analysis was conducted by Wood, Byk, and Associates, 829 Meadowview Road, Kennett Square, PA 19348, an engineering firm which was utilized to provide technical support for C&LM programs. The analysis was based on a DOE-2 default analysis and information was provided to David Bebrin (Eversource) on Aug. 17, 2007.

3.1.2 Refrigerator LED

Description of Measure

The replacement of older fluorescent lighting in commercial display refrigerators, coolers, and freezers with LED lighting.

Savings Methodology

The savings are based on the wattage reduction achieved by replacing fluorescent lighting with LED lighting. Interactive refrigeration savings are also achieved due to the reduced heat loads associated with lighting power reduction from more efficient lighting.

Inputs

Table 3-D: Inputs

Symbol	Description	Units
EER	Energy Efficiency Ratio of Refrigeration Units	
Н	Lighting Annual Run Hours	Hours
Ν	Number of Lights	
L	Ballast Location Factor	
ΔkW	Reduction in Power for Each Light	kW

Nomenclature

Table 3-E: Nomenclature

Symbol	Description	Units	Values	Comments
ACOP	Average Coefficient of Performance			
AKWH	Annual Gross Electric Energy Savings	kWh		
CF	Seasonal Peak Demand Coincident Factor for Refrigeration			Appendix One
СОР	Coefficient of Performance			Note [1]
EER	Energy Efficiency Ratio			Note [1]
AKW	Kilowatts, Average Demand Savings for both Summer and Winter	kW		
L	Ballast Location Factor			
N	Number of Lights			
h	Lighting Annual Run Hours			
ΔkW	Reduction in Power for Each Light	kW		

Retrofit Gross Energy Savings, Electric

$$AKWH = N \times \Delta kW \times h \times \left(1 + \frac{L}{ACOP}\right)$$

- ACOP = 2.03 for freezers and 2.69 for coolers (used for interactive effects). Note [1].
- If existing EERs are available, then ACOP = Average EER/3.413. Where Average EER = Full Load EER/0.85.
- L = 1 if ballast is located in refrigerated area, 0 if not in refrigerated area, and 0.5 if unknown.
- For open case refrigerators, the coefficient of performance and ballast location factor values shown above must be used. Only lighting savings are claimed and no "refrigeration" savings.

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

$$AKW = N \times \Delta kW \times \left(1 + \frac{CF \times L}{COP}\right)$$

- COP = 1.72 for freezers and 2.29 for coolers (used to calculate interactive affects). Note [1].
- If existing EERs are available, then COP = EER/3.413. Coincidence Factors ("CF") for refrigeration is assumed to be the same for both winter and summer.
- L = 1, if ballast is located in refrigerated area, 0 if not in refrigerated area, and 0.5 if unknown.

Changes from Last Version

No changes.

Notes

 Refrigeration interactive factors are based on communications* with the Nicholas Group, P.C. The EER and COP values are derived from ASHRAE handbook [2009 ASHRAE Handbook – Fundamentals, 2.3 (13)] for refrigeration equipment as well as experience from submitted projects.

3.2 HVAC & WATER HEATING

3.2.1 Water-Saving Measures

Description of Measure

This measure replaces existing pre-rinse spray valves, shower heads, and faucet aerators with units that have an average flow rate of 1.6 gpm (or less), 2.0 gpm, and 1.5 gpm respectively.

Savings Methodology

Spray valve savings are based on the results of a replacement program in California (**Ref [1]**). Showerhead and faucet aerator savings are based on **Ref [2]**.

Inputs

Table 3-F: Inputs

Symbol	Description	Units
Number of Spray Valves		
	Number of Showerheads	
	Number of Faucet Aerators	

Nomenclature

Table 3-G: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH _w	Annual Gross Electric Energy Savings – Water Heating	kWh		Ref [1]
ACCFw	Annual Natural Gas Consumption - Water Heating	ccf		Ref [1]
gpm	Gallons per Minute			
PDw	Peak Day Savings	ccf		

Retrofit Gross Energy Savings, Electric

If hot water is supplied via an electric water heater, then energy savings are as show in Table 3-H.

Spray Valves		
Facility Type	AKWH _w per Spray Valve	
Grocery	126 kWh	
Non-Grocery	957 kWh	
Showerheads/Fauce	Aerators (Note [1])	
Туре	AKWH _w per Unit	
Showerhead	507 kWh	
Aerator	309 kWh	

Table 3-H: Energy Savings – Electric Water Heater (Spray Valves and Aerators)

Retrofit Gross Energy Savings, Fossil Fuel

If hot water is supplied via a natural gas water heater, then annual energy savings are:

Table 3-I: Energy Savings – Natural Gas Water Heater (Spray Valves and Aerators)

Spray Valves		
Facility Type	ACCF _w per Spray Valve	
Grocery	5.3 ccf (5.5 Therms)	
Non-Grocery	40.8 ccf (42 Therms)	
Showerheads/Fauce	t Aerators (Note [1])	
Туре	ACCF _w per Unit	
Showerhead	27.2 ccf (28 Therms)	
Aerator	16.5 ccf (17 Therms)	

Retrofit Gross Seasonal Peak Demand Savings, Electric (Winter and Summer)

Assumed to be zero.

Retrofit Gross Peak Day Savings, Natural Gas

$$PD_{W} = PDF_{W} \times ACCF_{W} = 0.00321 \times ACCF_{W}$$

Spray Valves			
Facility Type	AKWH _w per Spray Valve		
Grocery	0.0172 ccf		
Non-Grocery	0.1310 ccf		
Showerheads/Faucet Aerators (Note [1])			
Type AKWH _w per Unit			
Showerhead	0.0811 ccf		
Aerator	0.0530 ccf		

Table 3-J: Retrofit Gross Peak Day Savings (Spray Valves and Aerators)

Non-Energy Impacts

Water savings are estimated to be:

Table 3-K: Non-Energy Impacts (Spray Valves and Aerators)

Spray Valves		
Facility Type	Gallons per Year	
Grocery	1,496	
Non-Grocery	8,603	
Showerheads/Faucet Aerators (Note [1])		
Туре	Gallons per Year	
Showerhead	3,900	
Aerator	5,460	

Changes from Last Version

• Updated showerhead savings based on updated Ref [2].

<u>References</u>

- Impact and Process Evaluation Final Report for California Urban Water Conservation Council, 2004-5 Pre-Rinse Spray Valve Installation Program (Phase 2), Feb. 21, 2007. Table 3-9, p. 26.
- [2] Federal Energy Management Program ("FEMP") Energy Cost Calculator for Faucets and Showerheads. Available at: <u>https://www.energy.gov/eere/femp/energy-cost-calculator-faucets-</u> and-showerheads-0.

Notes

Savings for showerheads and faucet aerators are based on the default usage assumed in Ref
 On average, faucets are assumed to run 30 minutes per day, 260 days per year.
 Showerheads are assumed to run 20 minutes per day, 365 days per year, Ref [2] and actual usage values should be used, when known, in lieu of default savings values.

3.2.2 Pipe Insulation

Description of Measure

Installation of insulation on bare hydronic supply heating pipes located in unconditioned spaces.

Savings Methodology

Savings were determined using 3E Plus v4.1 software (**Ref [1]**) with 50°F ambient temperature and 180°F fluid temperature. If the difference between the actual average ambient temperature and fluid temperature varies significantly from this difference (130°F), the savings should be scaled using linear interpolation. The hourly heat loss ("HL") savings per linear foot for various pipe and insulation sizes/material are provided in Table 3-L.

Pipe Material	Nominal Pipe Size (In)	Insulation Material	Insulation Thickness 0.5(in) HL Savings	Insulation Thickness 1.0(in) HL Savings	Insulation Thickness 1.5 (in) HL Savings	Insulation Thickness 2.0 (in) HL Savings
			Btu/hr/ft	Btu/hr/ft	Btu/hr/ft	Btu/hr/ft
	0.5	Polyethylene Foam Tube	40	47	50	52
	0.75	Polyethylene Foam Tube	50	57	61	63
	1.0	Polyethylene Foam Tube	62	73	77	79
	1.25	Polyethylene Foam Tube	76	88	96	98
	1.5	Polyethylene Foam Tube	86	103	109	113
	2.0	Polyethylene Foam Tube	110	127	135	139
Copper	0.5	Mineral Fibers	46	52	54	55
	0.75	Mineral Fibers	57	63	66	68
	1.0	Mineral Fibers	71	79	82	84
	1.25	Mineral Fibers	86	96	102	103
	1.5	Mineral Fibers	97	111	115	119
	2.0	Mineral Fibers	123	137	142	145
	0.5	Polyethylene Foam Tube	47	54	57	59
	0.75	Polyethylene Foam Tube	59	66	71	73
	1.0	Polyethylene Foam Tube	74	84	88	91
	1.25	Polyethylene Foam Tube	91	103	111	113
	1.5	Polyethylene Foam Tube	103	120	126	130
	2.0	Polyethylene Foam Tube	132	149	156	160
	0.5	Mineral Fibers	54	59	62	63
	0.75	Mineral Fibers	67	72	75	77
Steel	1.0	Mineral Fibers	82	91	94	96
	1.25	Mineral Fibers	101	111	117	118
	1.5	Mineral Fibers	114	128	132	136
	2.0	Mineral Fibers	144	158	164	167

Table 3-L: Hourly Heat Loss Savings per Linear Foot of Pipe Insulation

Inputs

Table 3-M: Inputs

Symbol	Description	Units
	Nominal Pipe Size Diameter	Inches
	Insulation Material	
	Insulation Thickness	Inches
L	Length of Insulation	Linear Foot
	Heating Fuel Type (Oil, Natural Gas)	

Nomenclature

Table 3-N: Nomenclature

Symbol	Description	Units	Values	Comments
ACCF	Annual Natural Gas Savings	CCF		
EFLH	Equivalent Heating Full-Load Hours for		Appendix	
	the Facility Type	Hours	Five	
HL	Heat Loss Savings per Linear Foot of Pipe	Btu/ft/hr	Table 3-L	
L	Length of Pipe Being Insulated	Linear ft		
AFUE	Annual Fuel Utilization Efficiency,		0.80	
ATOL	Estimated Boiler Efficiency			
PD	Peak Day Savings Natural Gas	ccf		

Retrofit Gross Energy Savings, Fossil Fuel

Annual natural gas heating savings:

$$ACCF = \frac{HL \times EFLH}{(102,900 \times 0.80)} \times L$$

Annual oil heating savings:

$$AOG = \frac{HL \times EFLH}{(138,690 \times 0.80)} \times L$$

Retrofit Gross Energy Savings, Example

One inch (1") thick polyolefin C1427-04 insulation was installed on 100 feet un-insulated hot water heating supply pipe (copper). The pipe nominal size is 1 inch and is located in unconditioned space of an office/retail type business. What is the energy savings resulting from adding the insulation?

Based on the data and using Table 3-L, the corresponding HL savings is 73 Btu/ft/hr. The length of pipe being insulated L=100 ft. Using Appendix Five (hours of use), heating EFLH for an office/retail is 1,248.

Using the savings formula:

$$ACCF = \frac{HL \times EFLH}{(102,900 \times 0.80)} \times L = \frac{73 \times 1248}{(102,900 \times 0.80)} \times 100 = 110.7Ccf$$

Retrofit Gross Peak Day Savings, Natural Gas

$$PD = \frac{ACCF}{EFLH} \times 24$$

Changes from Last Version

No changes.

References

[1] NAIMA, 3E Plus software tool, Version 4.1, Rel. 2012.

3.2.3 Duct Sealing

Description of Measure

Seal ducting located in unconditioned spaces. This measure is applicable to buildings that are similar to a residential construction or buildings where performing duct blaster/blower door testing is practical.

Savings Methodology

Refer to the duct sealing measure in the Residential Section of the 2019 PSD (Measure 4.2.9).

Changes from Last Version

No changes.

3.2.4 Duct Insulation

Description of Measure

Installation of insulation on ducting located in unconditioned spaces in commercial buildings.

Savings Methodology

The savings were determined using 3E Plus v4.1 software (**Ref [1]**). The savings are based on insulating existing bare ducting with R-6 insulation (**Ref [2]**). Savings presented in Tables 3-O and 3-P are for example purposes only and should only be used when the parameters (inputs) match the inputs here (like average air supply/return temperatures are 130° F/65° F for heating). For all other scenarios, the 3E software or a similar methodology should be used to develop estimates of the appropriate energy savings under actual conditions.

Duct Location	Season	Ambient Temp (°F)	Supply Air Temp (°F)	Return Air Temp (°F)
Attic	Heating	30	130	65
	Cooling	120	50	80
Basement	Heating	50	130	65
	Cooling	70	50	80

Table 3-O: Assumed Temperature Conditions

Table 3-P: Heat Transfer Rates per Hour per ft² of Insulation

	BTUH _b (Bare)		BTUH₅		BTUH₄ (Ins	ulated R-6)
Duct Location	Heating Btu/hr/ft ²	Cooling Btu/hr/ft ²	Heating Btu/hr/ft ²	Cooling Btu/hr/ft ²		
Supply Basement	132.34	25.22	12.04	2.73		
Return Basement	18.12	-	2.03	-		
Supply Attic	167.14	112.11	14.67	10.42		
Return Attic	45.86	61.93	4.63	6.18		

Inputs

Table 3-Q: Inputs

Symbol	Description
А	Insulation Area in Square Feet
	Heating Fuel/Heating System type (e.g., electric heat pump, natural gas furnace)

Nomenclature

Table 3-R: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH _C	Annual Gross Electric Cooling Savings	kWh		
AKWH _H	Annual Gross Electric Heating Savings	kWh		
BTUH _{ca}	Cooling Heat Transfer Rate of Insulated Ducting	Btu/hr/ft ²	Table 3-P	
BTUH _{cb}	Cooling Heat Transfer Rate of Un-insulated Ducting	Btu/hr/ft ²	Table 3-P	
BTUH _{ha}	Heating Heat Transfer Rate of Insulated Ducting	Btu/hr/ft ²	Table 3-P	
BTUH _{hb}	Heating Heat Transfer Rate of Un-insulated Ducting	Btu/hr/ft ²	Table 3-P	
COP _H	Coefficient of Performance of Heating Equipment	Unit-less	1.0 for Electric	
			Furnace	
			2.0 for Heat Pump	
			3.0 for Ground	
			Source Heat	
			Pump	
EFLH	Equivalent Heating or Cooling Full-Load Hours for the	Hours	Appendix Five	
	Facility Type			
А	Insulation Area in Square Feet			

Retrofit Gross Energy Savings, Electric

Annual gross electric heating savings for electrically-heated buildings:

$$AKWH_{H} = \frac{(BTUH_{hb} - BTUH_{ha}) \times EFLH \times A}{3412 \times COP_{H}}$$

Annual gross electric cooling savings for building equipped with central A/C or heat pump:

$$AKWH_{C} = \frac{(BTUH_{cb} - BTUH_{ca}) \times EFLH \times A}{3412 \times 3.5}$$

Where:

3412 = converts Btu to kWh

3.5 = estimated cooling equipment efficiency, COP

Retrofit Gross Energy Savings, Fossil Fuel

Annual gross natural gas savings, natural gas heated buildings:

$$ACCF = \frac{(BTUH_{hb} - BTUH_{ha}) \times EFLH \times A}{102,900 \times 0.80}$$

Where:

0.80 = estimated heating equipment efficiency

Retrofit Gross Energy Savings, Example

R-6 insulation was installed on 100 ft² of bare supply ducting located in the basement of a small retail store. This system utilizes a heat pump and provides both heating and cooling. What is the savings?

Annual gross electric heating savings:

$$AKWH_{H} = \frac{(BTUH_{hb} - BTUH_{ha}) \times EFLH \times A}{3412 \times 2}$$

- From Table 3-P: BTUH_{hb} = 132.34;
- From Table 3-P: BTUH_{ha}=12.04;
- From Appendix Five: EFLH heating =1248 hr;
- A = 100 ft²; and
- From Nomenclature Table 3-R: COP_H for heat pump = 2.0.

$$AKWH_{H} = \frac{(132.34 - 12.04) \times 1248 \times 100}{3412 \times 2} = 2200.09kWh$$

Annual gross electric cooling savings:

$$AKWH_{C} = \frac{(BTUH_{cb} - BTUH_{ca}) \times EFLH \times A}{3412 \times 3.5}$$

- From Table 3-P: BTUH_{cb} = 25.22;
- From Table 3-P: BTUH_{ca} = 2.73;
- From Appendix Five: EFLH cooling = 797; and
- **A** = 100 ft².

$$AKWH_{C} = \frac{(25.22 - 2.73) \times 797 \times 100}{3412 \times 3.5} = 150.10 kWh$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

Currently no demand savings are claimed for this measure.

Changes from Last Version

No changes.

References

- [1] NAIMA, 3E Plus software tool, Version 4.1, Rel. 2012.
- [2] Minimum Duct Insulation R-Value, Table 6.8.2B, ASHRAE Standard 90.1 2010.

3.2.5 Setback Thermostats

Description of Measure

Installation of programmable thermostats in place of non-programmable thermostats in small business applications.

Savings Methodology

Savings estimates below are based on computer simulation models (**Ref [1]**). Seven models were developed assuming different occupancy schedules. A 10-degree setback for unoccupied periods is assumed for both heating and cooling modes. A relationship between hours of occupancy and savings was developed from these models based on installed capacity (kW-electric heating, Tons-cooling, MBh-natural gas heat). Savings will only be realized if the facility currently maintains a constant temperature for both occupied and unoccupied periods.

There are no electric demand savings since savings occur during off-peak periods. Peak day savings are calculated using a peak day factor (0.0477) calculated for setback thermostats. A temperature BIN analysis was used to calculate the reduction for the temperature BINs during set back period. The sum load reductions from the coldest 24 hours were divided by the total sum of load reduction for the entire year.

Inputs

Symbol	Description	Units
CAP	Output Capacity of Natural Gas Heating Equipment	MBh
Hrs	Occupied Hours per Week	Hrs
Tons	Installed Cooling Capacity	Tons
Nr	Nameplate Rating of Baseboard Electric Resistance Heat	kW (Note [2])

Table 3-S: Inputs

Nomenclature

Table 3-T: Nomenclature

Symbol	Description	Units	Values	Comments
ACCF	Annual Natural Gas Savings	ccf		
AKWH	Annual Gross Electric Energy Savings	kWh		
CAP	Output Capacity of Natural Gas Heating Equipment	MBh		Input
Hrs	Occupied Hours per Week	Hours		Input
MBh	Thousands of Btu per Hour			
Nr	Nameplate Rating of Baseboard Electric Resistance Heat	kW		Input
PDF	Peak Day Factor		0.0477	
PD	Peak Day Savings	ccf		
SF _{CCF}	ccf Savings Factor	ccf/MBh		Note [1]
SF _{kWh,H}	kWh Savings Factor – Electric Heat	kWh/kW		Note [1]
SF _{kWh,C}	kWh Savings Factor – Cooling	kWh/Ton		Note [1]
Tons	Installed Cooling Capacity	Tons		Input

Retrofit Gross Energy Savings, Electric

Heating (applicable only if the facility has an existing electric resistance heat):

$$SF_{kWh,H} = 239.48 - (1.5569 \times Hrs)$$

$$AKWH_{H} = Nr \times SF_{kWh,H} = Nr \times (239.48 - 1.5569 \times Hrs)$$

Cooling (applicable only if the facility has an existing cooling system):

$$SF_{kWh,C} = 167.01 - (1.0929 \times Hrs)$$
$$AKWH_{C} = Tons \times SF_{kWh,C} = Tons \times [167.01 - (1.0929 \times Hrs)]$$

Retrofit Gross Energy Savings, Fossil Fuel

Heating (applicable only if the facility has existing natural gas heat):

$$SF_{CCF} = 2.79 - (0.0181 \times Hrs)$$
$$ACCF = CAP \times SF_{CCF} = CAP \times [2.79 - (0.0181 \times Hrs)]$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

There are no demand savings since savings occurs during off-peak periods. **Retrofit Gross Peak Day Savings, Natural Gas**

$PD = PDF \times ACCF = 0.0477 \times ACCF$

Changes from Last Version

No changes.

References

[1] Trane System Analyzer, Version 6.1.

Notes

- [1] Ref [1] to model a number of different occupancy schedules. These results were used to develop a correlation between occupancy schedule and energy savings. These equations are used to adjust savings for different occupancy schedules.
- If nameplate kW is not available for electric baseboard, use 200 watts per foot for baseboards < 3 feet and 250 watts per foot for all others. These values are based on research of typical existing equipment.
- [3] Steam Efficiency Improvement, Boiler Efficiency Institute, Alabama, 1987.
- [4] Steam Pressure Reduction: Opportunities and Issues, Energy Efficiency and Renewable Energy, U.S. Department of Energy, Wash. DC, 2005.
- [5] Steam Tables, Spirax Sarco, 2013. Available at: <u>http://www2.spiraxsarco.com/esc/Ss_Properties.aspx</u>. Last accessed on Oct. 10, 2013.

3.2.7 Steam Trap Replacement (Grashof Method)

Description of Measure

This measure replaces steam traps that are leaking or have failed open in commercial and industrial applications. It is applicable to thermostatic, mechanical, or thermodynamic traps; and is not applicable to venturi/orifice traps (**Ref [1]**).

Savings Methodology

The savings estimates below are based on the Grashof Equation (more information on the Grashof Equation can be found in **Ref [2]**) which provides steam loss through orifices at various pressures. The steam flows derived from the Grashof Equation are adjusted down based on whether the trap is leaking or failed open. Not all steam energy will be lost to the environment.

Inputs

Table 3-X: Inputs

Symbol	Description	
Р	Steam Pressure (psig)	
D	Orifice Diameter (in)	
EFLH	Equivalent Full Load Hours (hrs)	

Nomenclature

Table 3-Y: Nomenclature

Symbol	Description	Units	Values	Comments
ACCF	Annual Natural Gas Savings	ccf	102,900 Btu	
D	Orifice Diameter	Inches		
Eff	Boiler Efficiency	%	80%	
EFLH	Equivalent Full Load Hours	Hours	See below	Note [1] Note [2]
h _{fg}	Specific Enthalpy of Evaporation	Btu/lb _m	Varies based on pressure	
Lbm	Steam Flow through Orifice	lb _m /hr		
CR	Condensate Return Factor	%	100.0% no condensate return line; 36.3% condensate return line system	Ref [4]
Lf	Steam Loss Adjustment Factor	%	55% for failed traps. 26% for leaking traps	Ref [4]
Р	Gauge Pressure	psig		
Ра	Absolute Pressure	psia	Gauge pressure in psig + Atmospheric pressure (14.696)	
PD	Peak Day Natural Gas Savings	ccf		

Retrofit Gross Energy Savings, Fossil Fuel

Step 1 – Use Grashof's Equation to determine the steam flow rate in the orifice (Ref [2]):

$$lb_m = \frac{3600 \frac{sec}{hr} \times \pi \times D^2 \times P_a^{0.97} \times 0.7}{60 \frac{lb_m}{in^{.06} lb^{.97} hr} \times 4} = 32.99 \times D^2 \times P_a^{0.97}$$

- Where, Ib_m = Steam flow rate, Ib/hr;
- P_a = Absolute pressure in steam trap line, psia; and
- D = Diameter of the orifice, in
 - 0.97 = empirically derived factor in Grashof Equation
 - 60 = empirically derived factor in Grashof Equation
 - \circ 0.7 = Discharge coefficient (70%).

Gauge Pressure (psig)	Absolute Pressure (psia)	Specific Enthalpy of Evaporation (Btu/lb)
2	16.70	966.07
5	19.70	960.54
10	24.70	952.56
15	29.70	945.68
25	39.70	934.09
50	64.70	912.06
75	89.70	895.16
100	114.70	881.04
125	139.70	868.68
150	164.70	857.58
200	214.70	837.95
250	264.70	820.68
300	314.70	805.03

Table 3-Z: Enthalpy of Steam by Pressure (Ref [3])

Step 2 – Using the following equation estimate annual savings based on the steam loss (Step 1), specific enthalpy of evaporation (Table 3-Z), equivalent full load hours, adjustment factors, and boiler efficiency:

$$ACCF = \frac{lb_m \times EFLH \times h_{fg} \times L_f \times CR}{Eff \times 102,900 \frac{btu}{ccf}}$$

Retrofit Gross Peak Day Savings, Natural Gas

$$PD = \frac{ACCF \times 24}{EFLH}$$

Where:

EFLH = Site specific hours if available

If unknown:

- EFLH = 7,752 for process steam (Note [1]);
- EFLH = 3,763 for heating steam coil applications (Note [2]); and
- **EFLH** = 5,376 for heating steam distribution applications.

Changes from Last Version

Updated calculation methodology based on Ref [4].

References

- [1] Steam Efficiency Improvement, Boiler Efficiency Institute, Alabama, 1987.
- [2] E. A. Avallone, T. Baumeister III and A. M. Sadegh, Marks' Standard Handbook for Mechanical Engineers, New York: McGraw-Hill, 2007.
- [3] Steam Tables, Spirax Sarco, 2013. Available at: <u>http://www2.spiraxsarco.com/esc/Ss_Properties.aspx</u>. Last accessed on Oct. 10, 2013.
- [4] Steam Trap Evaluation Phase 2, Massachusetts Program Administrators and Energy Efficiency Advisory Council, Mar. 8, 2017.

Notes

- [1] Estimated.
- [2] Estimated.

3.2.8 Blower Door Test (Small C&I)

Description of Measure

This measure is for verifying infiltration reduction of older residential type construction, less than 5,000 ft², used for commercial occupancy (predominantly small business customers). Blower Door test equipment must be used to verify infiltration reduction.

Savings Methodology

The savings methodology is based on seven pilot projects conducted under Eversource's small business air sealing pilot program in Connecticut (**Note [1]**). Actual blower door tests were conducted at these sites. DOE-2 simulation and billing analyses were also performed for the pilot projects. The results were reviewed and verified by Eversource engineers. The average energy savings per CFM reduction were estimated from the results of the projects and then converted to the appropriate fuels using unit conversions. The cooling savings per CFM and demand savings are from residential blower door measure (Measure 4.4.4). The savings would be reviewed with customer billing data by the Companies' staff.

Inputs

Symbol	Description	
CFM _{pre}	Infiltration before Air Sealing at 50 Pa	
CFM _{post}	Infiltration after Air Sealing at 50 Pa	
Heating Fuel Type (e.g., electric resistive, HP, natural gas, oil, etc.)		
	Heating Distribution Type (e.g., forced air with fan, HP, etc.)	

Table 3-AA: Inputs

Nomenclature

Table 3-BB: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH _C	Annual Gross Electric Energy Savings - Cooling	kWh		
AKWH _H	Annual Gross Electric Energy Savings - Heating	kWh		
CFM _{post}	Infiltration After Air Sealing Measured with the	CFM		
	House Being Negatively Pressurized to 50 Pa			
	Relative to Outdoor Conditions			
CFM _{pre}	Infiltration Before Air Sealing Measured with the	CFM		
	House Being Negatively Pressurized to 50 Pa			
	Relative to Outdoor Conditions			
PDF _H	Natural Gas Peak Day Factor, Heating		0.00977	Appendix
				One
PD _H	Natural Gas Peak Day Savings, Heating	ccf		
SKW _C	Seasonal Summer Peak Demand Savings - Cooling	kW		
WKW _H	Seasonal Winter Peak Demand Savings - Heating	kW	0	

Retrofit Gross Energy Savings, Electric

Table 3-CC: Retrofit Electric Savings per CFM Reduction (at 50 Pa)

Measure	Symbol	Energy Savings	Units
Electric Resistance Heating	$BD_{Heating}$	2.53	kWh
Heat Pump Heating	$BD_{Heating}$	1.26	kWh
Geothermal Heating	$BD_{Heating}$	0.84	kWh
Air Handler (fan)	BD _{AH}	0.025	kWh
Cooling (central air)	BD _{Cooling}	0.059	kWh

For electric resistive, heat pump, or geothermal heating systems:

$$AkWH_{H} = BD_{Heating} \times (CFM_{Pre} - CFM_{Post})$$

For fossil fuel heating with air handler unit:

 $AkWH_{H} = BD_{AH} \times (CFM_{Pre} - CFM_{Post})$

For homes with central air cooling:

$$AkWH_{C} = BD_{Cooling} \times (CFM_{Pre} - CFM_{Post})$$

Retrofit Gross Energy Savings, Fossil Fuel

Table 3-DD: Retrofit Fossil Fuel Savings per CFM Reduction (at 50 Pa)

Measure	Symbol	Energy Savings	Units
Fossil Fuel Heating			
Natural Gas Heating	BD _{NG}	0.11	ccf
Propane Heating	$BD_{propane}$	0.12	Gallons
Oil Heating	BD _{Oil}	0.07	Gallons

For homes with natural gas heating system:

$$ACCF_{H} = BD_{NG} \times (CFM_{Pre} - CFM_{Post})$$

For homes with oil heating system:

$$AOG_{H} = BD_{Oil} \times (CFM_{Pre} - CFM_{Post})$$

For homes with propane heating system:

$$APG_{H} = BD_{propane} \times (CFM_{Pre} - CFM_{Post})$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

Table 3-EE:	Demand	Savings	per Cl	FM Red	luction

Measure	Symbol	Energy Savings	Units
Electric Resistance and Heat Pump	ВD _{wкw}	0.00117	kW
Geothermal Heat Pump	ВD _{wкw}	0.00039	kW
Central A/C and Heat Pump	BD _{SKW}	0.00009	kW

$$WKW_{H} = BD_{WKW} \times (CFM_{Pre} - CFM_{Post})$$

$$SKW_{C} = BD_{SKW} \times (CFM_{Pre} - CFM_{Post})$$

<u>Note</u>: The demand savings are from the residential measure 4.4.4 Infiltration Reduction Testing (Blower Door test).

Retrofit Gross Peak Day Savings, Natural Gas

For homes with natural gas heating system:

$$PD_{H} = ACCF_{H} \times PDF_{H}$$

Changes from Last Version

No changes.

Notes

[1] As part of Eversource's Small Business Energy Advantage ("SBEA") Air Sealing pilot in 2012, EcoSmart Energy Services conducted air sealing, blower door tests, DOE-2 modeling, and billing analysis on seven older residential types of construction, both balloon and platform framing, that were used for commercial occupancy in Connecticut. The above energy savings per CFM are based on these SBEA pilot projects.

3.2.9 Add Speed Control to Rooftop Unit Fan

Description of Measure

This measure installs speed control on existing constant speed rooftop unit evaporator and ventilation fans. In most cases the control method will include a VFD, but the speed settings will be staged based on heating, cooling, and ventilation modes.

Savings Methodology

The savings are determined via spreadsheet and are based on the inputs below and the following assumptions:

- 1. Full load cooling and heating hours from Appendix Five.
- 2. 13% of the fan hours are assumed to be in free cooling; based on local temperature BINs.
- **3.** 25% of heating/cooling equivalent full load hours are assumed to be in Stage 2 (Based on local temperature BINs).
- 75% of heating/cooling equivalent full load hours are assumed to be in Stage 1 (50% output).
 To calculate the fan hours in stage one, the equivalent full load heating/cooling are multiplied by (75% from above) then divided by 50% capacity.

Ref [1] is for information only.

Inputs

Table 3-FF: Inputs

Symbol	Description	
Н	Fan Run Hours	
EFLH _C	Equivalent Full Load Cooling Hours	
EFLH _H	Equivalent Full Load Heating Hours	
SP1	Stage 1 Fan Speed	
SP2	Stage 2 Fan Speed	
SPV	Ventilation Only Fan Speed	
HP	Fan Motor Nameplate Horsepower	
LF	Fan Motor Load Factor	
EFM	Motor Efficiency	

Nomenclature

Table 3-GG: Nomenclature

Symbol	Description	Units	Values	Comments
AKW	Annual Summer and Winter Seasonal Peak	kW		
	Demand Savings			
AKWH	Annual Gross Electric Energy Savings	kWh		
AKWH _E	Annual Gross Electric Energy Consumption-	kWh		
	Existing System			
AKWH _R	Annual Gross Electric Energy Consumption-	kWh		
	After Retrofit			
EFM	Motor Efficiency	%		
EFLH _C	Equivalent Full Load Cooling Hours	Hours		Appendix Five
EFLH _H	Equivalent Full Load Heating Hours	Hours		Appendix Five
Н	Total Fan Run Hours	Hours		Appendix Five
H ₁	Fan Run Hours at Stage 1	Hours		See spreadsheet
H ₂	Fan Run Hours at Stage 2	Hours		See spreadsheet
Hv	Fan Run Hours in Ventilation Only Mode	Hours		Hours when no
				heating or cooling
Ho	Fan Run Hours in Free Cooling Mode	Hours		13% of total fan
				hours
HP	Fan Motor Nameplate Horsepower	Horsepower		
KW _E	Existing Fan kW	kW		
LF	Fan Motor Load Factor	%	80%	
SP1	Stage 1 Fan Speed	%	75%	
SP2	Stage 2 Fan Speed	%	90%	
SPV	Ventilation Only Fan Speed	%	40%	
	Fan Savings Exponent		2.7	Note [1]

Retrofit Gross Energy Savings, Electric

 $AKWH = AKWH_E - AKWH_R$

 $AKWH_E = KW_E * H$

$$KW_{E} = \frac{0.746 \times HP \times LF}{EF_{M}}$$

$$AKWH_{R} = \frac{KW_{E} \times SP1^{2.7} \times H_{1}}{0.97} + \frac{KW_{E} \times SP2^{2.7} \times H_{2}}{0.97} + \frac{KW_{E} \times SP1^{2.7} \times H_{0}}{0.97} + \frac{KW_{E} \times SPV^{2.7} \times H_{V}}{0.97}$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

$$AKW = KW_E - \left(\frac{KW_E \times SP2^{2.7}}{0.97}\right)$$

It is assumed that the fan will be running at stage 2 speed during the summer/winter peak demand period and is 100% coincident.

Changes from Last Version

No changes.

References

[1] Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-22656, Pacific Northwest National Laboratory, Jul. 2013.

Notes

[1] Exponent for fan saving that adjust ideal fan law value of 3.0 to account for fan, motor, and VFD efficiency.

3.2.10 Commercial Kitchen Hood Controls

Description of Measure

This measure is for the installation of controls to reduce airflow in commercial kitchen exhausts hoods. These systems can also control the airflow in dedicated make-up air units associated with the kitchen exhaust hoods. Savings are achieved by reducing the air flow of the exhaust and make-up air fans when cooking is not taking place under the hoods. Significant fan energy savings can be achieved along with reductions in heating and air conditioning loads.

Typically, these systems will be retrofitted to existing exhaust hoods. Systems may also be installed during construction of a new commercial kitchen.

Savings Methodology

The energy savings are calculated using a custom spreadsheet based on site-specific input for all projects. Savings are based on hours of kitchen operation, size of exhaust and make-up air fans, size of the kitchen, ventilation rate, and oversize factor of the exhaust hoods, cooling and heating efficiencies, and outside air temperatures. Adjustments can be made to the savings based on how much conditioned air the exhaust fans are pulling for the facility (e.g., is the kitchen area closed off from the dining area, are there make-up air fans incorporated in the exhaust hoods or in close proximity?).

Fan energy savings are estimated based on empirical data from studies of existing installations at a variety of types of facilities. Heating and air conditioning savings are estimated using temperature BIN data, along with an estimate of how much conditioned air is being exhausted. Summer seasonal peak electric demand savings are assumed to be zero as most commercial kitchens are assumed to be operating during the summer seasonal peak period.

Natural gas peak day savings are calculated using the peak day factor for furnace/boiler of 0.0152 from Measure 2.2.6 since the savings for this measure are consistent with the furnace/boiler savings profile.

The baseline for this measure is a kitchen exhaust system without variable speed fan controls.

Inputs

Table 3-HH: Inputs

Symbol	Description	Units
Hr	Hours of Operation	hrs
HP _{EF}	Horsepower of Exhaust Fans	HP
HP _{MA}	Horsepower of Make-up Air Fans	HP
N _{EF}	Number of Exhaust Fans	
N _{MA}	Number of Make-up Air Fans	
EER	Cooling System Efficiency	Btu/watt-hr
HEFF	Heating System Efficiency	%
VR	Kitchen Ventilation Rate	CFM/ft ²
А	Kitchen Area	Ft ²
OF	Ventilation Oversize Factor	%
PR	Power Reduction	%
FR	Flow Reduction	%
MEff	Motor Efficiency	%
LF	Motor Load Factor	%
MHDD	Modified Heating Degree Days ^o F-day	
CDD	Modified Cooling degree Days	°F-day

Changes from Last Version

No changes.

3.3 OTHER

3.3.1 Custom Measure

Description of Measure

This measure may apply to any C&I Retrofit installations whose scope may be considered custom or comprehensive and not covered by another specific measure.

Savings Methodology

Energy and demand savings are calculated on a custom basis for each customer's specific situation. Savings are calculated as the difference between baseline energy usage/peak demand and the energy use/peak demand after implementation of the custom measure. Energy savings estimates should be calibrated against billing or metered data where possible to test the reasonableness of energy savings. Also, the energy and demand savings analysis must be reviewed for reasonableness by either a thirdparty consulting engineer or a qualified in-house engineer.

The methodology for determining natural gas peak day savings is provided in Appendix One.

Note that the demand savings methodologies below provide a gross, reasonable estimate based on available information. Final reported values are adjusted based on realization rates provided in Appendix Three.

Electric demand savings methodologies are categorized as follows:

- 1. Temperature dependent measures (i.e., HVAC measures that vary with ambient temperature).
- 2. Non-temperature dependent measures (e.g., process, lighting, and time control).
- 3. Computer simulation modeled measures (may include both 1 and 2).

Temperature dependent measures:

Savings from individual temperature dependent measures are typically determined by either full load hour analysis or BIN temperature analysis.

Full load hour analysis:

Summer and winter demand savings are calculated using an appropriately derived seasonal peak coincidence factor. Coincident factors for various measures (and/or end use) are provided in Appendix

One. Demand savings will be determined by multiplying the connected load kW savings by the appropriate coincidence factor.

Temperature BIN analysis

Temperature BINs shall be designated in 2 degree Fahrenheit increments.

- The summer seasonal peak demand savings shall be the difference between the weighted average demand of the top temperature BINs that capture the majority of the ISO-NE summer seasonal peak hours in the previous three years, for the base and "efficient" cases. All hours above 80 degrees will be used for Bridgeport and 84 degrees will be used for Hartford.
- The winter seasonal peak demand savings shall be the difference between the weighted average demand of the bottom temperature BINs that capture the majority of the ISO-NE winter seasonal peak hours in the previous three years, for the base and "efficient" cases. All hours below 30 degrees will be used for Bridgeport and 26 degrees will be used for Hartford.

Non-Temperature-Dependent Measures

Demand savings for measures that are not temperature-dependent will be determined by either the coincidence factors from Appendix One or the average estimated week day ("WD") savings over the summer or winter seasonal peak period. A custom coincidence factor may also be used for measures or end uses that are not identified in Appendix One. However, the analysis determining the custom coincidence factor must be performed or approved by a qualified in-house engineer.

The average summer/winter seasonal peak demand savings shall be determined as follows:

$$SKW = \frac{Annual \ kWh \ savings \ (WD - June, July, August)}{Equipment \ Run \ hours \ (WD - June, July, August)} \times \left(\frac{Run \ hours \ during \ 12 \ pm - 6 \ pm \ WD}{6}\right)$$
$$WKW = \frac{Annual \ kWh \ savings \ (WD - December, January)}{Equipment \ Run \ hours \ (WD - December, January)} \times \left(\frac{Run \ Hours \ during \ 4 \ pm - 9 \ pm \ WD}{5}\right)$$

<u>Note</u>: The average demand savings methodology should only be used when the coincident factor methodology cannot be used or is not practicable.

Computer Simulation Modeling

For certain unique or complex projects including those with interactive effects performance shall be determined using a computer simulation model. Approved software and modeling requirements are specified by the Companies' program administrators.

The methodology for determining the seasonal peak demand savings will depend on the computer simulation output capabilities. If the model can provide the demand for the coldest and hottest hours of the year and the month when they occur, then that data will be used to determine demand savings.

The summer seasonal peak demand savings will be the difference between the peak demand (whole building) from the base and design models during the hours as described in the temperature dependent section above. This assumes the hottest hours occur during June through August. If the hottest hour methodology cannot be used, then the demand savings shall be determined by taking the average summer (June, July, and August) peak demand from the base model and subtracting the average summer (June, July, and August) peak demand from the design model. If neither of these methods can be used, then in-house engineering must review the project/model to determine an acceptable method.

The winter seasonal peak demand savings will be the difference between the peak demand (whole building) from the base and design models during the coldest hours as described in the temperature dependent section above. This assumes the coldest hours occurs during December or January. If the coldest hour methodology cannot be used, then the demand savings shall be determined by taking the average winter (December and January) peak demand from the base model and subtracting the average winter (December and January) peak demand from the design model. If neither of these methods can be used, then in-house engineering must review the project/model to determine an acceptable method.

Baseline

The baseline efficiency is the efficiency of the existing equipment being replaced in the measure.

Nomenclature

Table 3-II: Nomenclature

Symbol	Description	Units	Values
WD	Week Days	Days	

Changes from Last Version

No changes.

3.4 **REFRIGERATION**

3.4.1 Cooler Night Covers

Description of Measure

Installation of retractable covers for open-type multi-deck refrigerated display cases. The covers are deployed during the unoccupied times in order to reduce the energy loss.

Savings Methodology

The savings values below are based on a test conducted by Southern California Edison ("SCE") at its stateof-the-art Refrigeration Technology and Test Center ("RTTC") in Irwindale, CA (**Ref [1]**). The RTTC's sophisticated instrumentation and data acquisition system provided detailed tracking of the refrigeration system's critical temperature and pressure points during the test period. These readings were then utilized to quantify various heat transfer and power related parameters within the refrigeration cycle. The results of SCE's test focused on three typical scenarios found mostly in supermarkets.

There are no demand savings for this measure (covers will not be in use during the peak period).

Inputs

Table 3-JJ: Inputs

Symbol	Symbol Description		
Н	Hours per year the cover are in use		
W	Width of the opening that the covers protect, ft.		

Nomenclature

Table 3-KK: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH	Annual Gross Electric Energy Savings	kWh per year		
h	Hours per Year the Cover are in Use	Hours/yr		
SF	Savings Factor Based on the	kW/ft		
	Temperature of the Case			
W	Width of the Opening that the	ft		
	Covers Protect			

Retrofit Gross Energy Savings, Electric

$AKWH = W \times h \times SF$

Table 3-LL: Savings Factor Based on Case Temperature (Ref [1])

Case Temperature	SF (kW/ft)
Low Temperature (-35F to -5F)	0.03
Medium Temperature (0F to 30F)	0.02
High Temperature (35F to 55F)	0.01

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

There are no demand savings for this measure because the covers will not be in use during the peak period.

Changes from Last Version

No changes.

References

[1] "Effects of the Low Emissivity Shields on Performance and Power Use of a Refrigerated Display Case" Southern California Edison Refrigeration Technology and Test Center Energy Efficiency Division Aug. 8, 1997.

3.4.2 Evaporator Fan Controls

Description of Measure

Installation of evaporator fan controls to walk-in coolers and freezers using evaporator fans that run constantly. The evaporator fan control system either shuts off or reduces the speed of the evaporator fans when the cooler's thermostat is not calling for cooling.

Savings Methodology

The savings from this measure are derived from a reduction in fan speed or the number of hours that the evaporator fans are running. If fan motors are also replaced with ECM motors in conjunction with this measure, then savings are based on the reduced fan motor wattage. Interactive refrigeration savings are also achieved due to reduced fan speed or run-hours. The off hours, power reduction factors, and power factor are stipulated values based on vendor experience.

Inputs

Table 3-MM: Inputs

Symbol	Description		
А	Amperage		
EER	Energy Efficiency Ratio of Refrigeration Units		
N	Number of Fans		
V	Volts		

Nomenclature

Table 3-NN: Nomenclature

Symbol	Description	Units	Values	Comments
А	Amperage of Existing Fans			
ACOP	Average Coefficient of Performance			
AKWH	Annual Gross Electric Energy Savings	kWh		
CF	Seasonal Peak Demand Coincident Factor for Refrigeration			Appendix One
COP	Coefficient of Performance			
DP	Power Reduction Factor	%		
ECM	Electronically Commutated Motor			
EER	Energy Efficiency Ratio			
AkW	Average Hourly Demand Savings for both Summer and Winter	kW		
N	Number of Fans			
Pf	Power Factor of Existing Fans			
PSC	Permanent Split Capacitor Motor			
r	Adjustment Factor for Two-Speed Controllers		1 or 0.86	
V	Volts of Existing Fans			
h	Fan Off Hours After Measure Installation			

Retrofit Gross Energy Savings, Electric

If the fan motors are single-phase then calculate the energy savings as follows:

$$AKWH = N \times V \times A \times Pf \times r \times (1 - DP) \times \frac{h}{1000^{W/_{kW}}} \times \left(1 + \frac{1}{ACOP}\right)$$

If the fan motors are three-phase then calculate the energy savings as follows:

$$AKWH = N \times V \times A \times \sqrt{3} \times Pf \times r \times (1 - DP) \times \frac{h}{1000^{W/_{kW}}} \times \left(1 + \frac{1}{ACOP}\right)$$

If existing fan motors are being replaced concurrently with this measure, then DP = 0.40 for PSC motors and 0.65 for shaded pole motors. If fan motors are not being replaced or if the volt/amp readings were taken after fans were replaced, then DP = 0. See **Note** [1].

- **Pf** = estimated to be 0.65;
- h = 3,000. See Note [2];
- **r** = 1 for on/off controllers and 0.86 for two speed controllers;
- ACOP = 2.03 for freezers and 2.69 for coolers (used for interactive affects). See Note [3];
- If existing EERs are available, then ACOP = Average EER/3.413; and

• Average EER = Full Load EER/0.85.

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

If the fan motors are single-phase, then calculate the demand savings as follows:

$$AKW = CF \times N \times V \times A \times Pf \times r \times \frac{(1 - DP)}{1000^{W_{kW}}} \times \left(1 + \frac{1}{COP}\right)$$

If the fan motors are three-phase, then calculate demand savings as follows:

$$AKW = CF \times N \times V \times A \times \sqrt{3} \times Pf \times r \times \frac{(1 - DP)}{1000^{W/_{kW}}} \times \left(1 + \frac{1}{COP}\right)$$

- If existing fan motors are being replaced concurrently with this measure, then DP = 0.40 for PSC motors and 0.65 for shaded pole motors. If fan motors are not being replaced or if the volt/amp readings were taken after fans were replaced, then DP = 0. See Note [1];
- **Pf** = estimated to be 0.65;
- **r** = 1 for on/off controllers and 0.86 for two speed controllers;
- **COP** = 1.72 for freezers and 2.29 for coolers (used to calculate interactive effects);
- If existing EERs are available, then COP = EER/3.413; and
- CF for refrigeration is the same for both winter and summer.

Changes from Last Version

No changes.

References

[1] 2010 ASHRAE Handbook - Refrigeration. Retail Food Store Refrigeration and Equipment, Chapter 15, Figure 24.

Notes

- [1] Power reduction factors of existing fans are based on correspondence with a National Resource Management (NRM) representative, Mar. 3 and Jun. 6 of 2011. If motors are being replaced concurrently with this measure, then savings calculation for this measure should be coordinated with 3.4.3 to ensure the ending point of one measure (fan power/hours) is the starting point for the other.
- [2] Fan off hours after measure installation (h) is based on correspondence with Nick Gianakas, Nicholas Group, P.C., Jun. 27, 2010.

[3] Refrigeration interactive factors are derived from **Ref** [1] and correspondence with Nick Gianakas, Nicholas Group, P.C., Jun. 27, 2010.

3.4.3 Evaporator Fans Motor Replacement

Description of Measure

Installation of an electronically commutated motor in place of existing integral electric motor connected to evaporator fans in walk-in coolers, freezers, and reach-in display cases.

Savings Methodology

The savings estimates are based on the wattage reduction from replacing an existing PSC or shaded pole motor with an electronically commutated motor. Interactive refrigeration savings are also achieved due to reduced heat loads resulting from fan power reduction. The run hours, power reduction factors, and power factor are stipulated values based on vendor experience.

Inputs

Table 3-00: Inputs

Symbol	Description
А	Amperage
EER	Energy Efficiency Ratio of Refrigeration Units
N	Number of Fans
V	Volts

Nomenclature

Table 3-PP: Nomenclature

Symbol	Description	Units	Values	Comments
А	Amperage of Existing Fans			
ACOP	Average Coefficient of Performance (used for		Estimate from existing EER	Notes [4], [3]
	interactive effects)		when available per Note [4],	
			otherwise: Freezers: 2.03	
			Coolers: 2.69	
AKWH	Annual Gross Electric Energy Savings	kWh		
CF	Seasonal Peak Demand Coincident Factor for			Appendix
	Refrigeration (same for summer and winter)			One
COP	Coefficient of Performance (used to calculate		Freezers: 1.72	
	interactive effects)		Coolers: 2.29	
DP	Power Reduction Factor		PSC motors: 0.40	Note [1]
			Shaded pole motors: 0.65	
EER	Energy Efficiency Ratio			
h	Hours of Operation	Hours	With existing controls: 5,500	Note [2]
			Without controls: 8,500	
N	Number of Fans			
Pf	Power Factor of Existing Fans		0.65	Estimated
PSC	Permanent Split Capacitor Motor			
V	Volts of Existing Fans			

Retrofit Gross Energy Savings, Electric

If the existing fan motors are single-phase then calculate the energy savings as follows:

$$AKWH = N \times V \times A \times Pf \times DP \times \frac{h}{1000} \times \left(1 + \frac{1}{ACOP}\right)$$

If the existing fan motors are three-phase then calculate the energy savings as follows:

$$AKWH = N \times V \times A \times \sqrt{3} \times Pf \times DP \times \frac{h}{1000^{W/_{kW}}} \times \left(1 + \frac{1}{ACOP}\right)$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

If the existing fan motors are single-phase then calculate demand savings as follows:

$$AKW = N \times V \times A \times Pf \times \frac{DP}{1000^{W/_{kW}}} \times \left(\frac{h}{8760^{hrs/_{yr}}} + \frac{CF \times 1}{COP}\right)$$

If the existing fan motors are three-phase then calculate demand savings as follows:

$$AKW = N \times V \times A \times \sqrt{3} \times Pf \times \frac{DP}{1000^{W}_{kW}} \times \left(\frac{h}{8760^{hr}_{yr}} + \frac{CF \times 1}{COP}\right)$$

Changes from Last Version

No changes.

References

[1] 2010 ASHRAE Handbook - Refrigeration. Retail Food Store Refrigeration and Equipment, Chapter 15, Figure 24.

Notes

- [1] Power reduction factors of existing fans are based on correspondence with a National Resource Management (NRM) representative on Mar. 3 and Jun. 6 of 2011.
- [2] Fan off hours after measure installation (h) is based on correspondence with Nick Gianakas, Nicholas Group, P.C., Jun. 27, 2010. If fan controls are being installed concurrently with this measure, then savings calculation for this measure should be coordinated with 3.4.2 to ensure the ending point of one measure (fan power/hours) is the starting point for the other.
- [3] Refrigeration interactive factors are derived from Reference [1] and correspondence with Nick Gianakas, Nicholas Group, P.C., Jun. 27, 2010.
- [4] If existing EERs are available, then ACOP = Average EER/3.413; Average EER = Full Load EER/0.85

3.4.4 Door Heater Controls

Description of Measure

Installation of a control system to an existing facility where door heaters operate continuously. This measure is applicable to walk-in coolers and freezers that have electric heaters on their doors whose purpose is to prevent condensation from forming. The control system shuts off the door heaters when the facility's humidity is too low to allow condensation to occur.

Savings Methodology

The savings from this measure result from a reduction in the operating hours of the door heaters. The off hours are stipulated values and are overall averages based on vendor experience (See **Note [1]**). They are applicable to all store types and sizes.

Inputs

Table 3-QQ: Inputs

Symbol	Description		
А	Amperage		
Ν	Number of Door Heaters		
V	Volts		
	Type: Cooler or Freezer		

Nomenclature

Table 3-RR: Nomenclature

Symbol	Description	Units	Values	Comments
А	Amperage of Door Heater			
AKW	Annual Summer and Winter Electric Demand	kW		
	Savings			
AKWH	Annual Gross Electric Energy Savings	kWh		
CF	Seasonal Peak Demand Coincident Factor for		Appendix One	
	Refrigeration (same for Summer and Winter)			
h	Heater Off Hours After Measure Installation	Hours	Coolers: 6,500	Note [1]
			Freezers: 4,070	
kW	Kilowatts			
N	Number of Heaters			
Pf	Power Factor		1	Note [2]
V	Volts of Door Heater			

Retrofit Gross Energy Savings, Electric

$$AKWH = \frac{N \times V \times A \times Pf \times h}{1000^{W/_{kW}}}$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

$$AKW = \frac{CF \times N \times V \times A \times Pf}{1000^{W}_{kW}}$$

Changes from Last Version

No changes.

Notes

- Heater off hours after measure installation for freezers and refrigerators are based on correspondence with a National Resource Management ("NRM") representative, Jul. 14, 2017.
 For the purposes of electric demand savings calculations, CF for refrigeration is assumed to be the same for both winter and summer.
- [2] Assumes single phase power.

3.4.5 Vending Machine Controls

Description of Measure

This measure relates to the installation of new controls on existing refrigerated beverage vending machines, non-refrigerated snack vending machines, and glass front refrigerated coolers.

Controls can significantly reduce the energy consumption of vending machine and refrigeration systems. This measure covers two separate methods of on/off control of vending machines. In one method, the vending machine is controlled by occupancy sensors. In the second method, controls operation are based on a set time schedule.

Qualifying controls must power down these systems during scheduled periods or periods of inactivity but, in the case of refrigerated machines, must always maintain a cool product that meets customer expectations. This measure should not be applied to ENERGY STAR-qualified vending machines, as they already have built-in controls.

Symbol	Description
Equipment Type	Type of Vending Machine
HOURS _{after}	Hours Vending Machine Turned on After Measure Installation
Ν	Number of Vending Machines
А	Amperage of Vending Machine (if available)
V	Voltage of Vending Machine

Inputs

Table 3-SS: Inputs

Nomenclature

Table 3-TT: Nomenclature

Symbol	Description	Units	Values	Comments
А	Amperage of Vending Machine	amps		
AKWH	Annual Gross Electric Energy Savings	kWh		
ESF	Energy Savings Factor			Tables 3-VV and 3-WW
Equipment Type	Type of Vending Machine			
HOURS _{after}	Hours Vending Machine Turned on After Measure			
	Installation			
HOURS _{before}	Hours Vending Machine Turned on Before Measure Installation	hrs	8,760	
Ν	Number of Vending Machines			
PF	Power Factor		0.85	
SKW	Summer Demand Savings	kW	0	
V	Volts of Vending Machine	volts		
WATTS _{base}	Connected kW of the Controlled Equipment	W		Table 3-UU
WKW	Winter Demand Savings	kW	0	

Retrofit Gross Energy Savings, Electric

AKWH = WATTS_{base} $/1000 \times HOURS \times ESF \times N$

Where:

- WATTS_{base} = connected kW of the controlled equipment; see Table 3-UU below for default values by connected equipment type: or where amperage and voltage are known using the following calculation; = V x A x PF; 1,000 = conversion factor (W/kW);
- Hours = operating hours of the connected equipment; in most cases, it is assumed that the equipment operates 24 hours per day, 365 days/year or 8760; and
- **ESF** = Energy Savings Factor; represents the percent reduction in annual kWh consumption of the equipment controlled; see Table 3-VV below for Occupancy-Based Controls by equipment type, and Table 3-WW below for Time Schedule-Based Controls by equipment type.

Table 3-UU: Connected Wattage of Vending Machines

Equipment Type	WATTS _{base}
Refrigerated Beverage Vending Machines	400 (Ref [1])
Non-Refrigerated Snack Vending Machines	80 (Ref [1])
Glass Front Refrigerated Coolers	400 (Ref [2])
Custom Calculation	V x A x PF

Table 3-VV: Occupancy-Based Controls

Equipment Type	Energy Savings Factor (ESF)
Refrigerated Beverage Vending Machines	44% (Ref [1])
Non-Refrigerated Snack Vending Machines	52% (Ref [1])
Glass Front Refrigerated Coolers	44% (Ref [2])

Table 3-WW: Time Schedule-Based Controls

Equipment Type	Energy Savings Factor (ESF)
All	$\left(1 - \frac{HOURS_{after}}{HOURS}\right) \times 0.45 [Note 2]$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

- **SKW** = 0; and
- **WKW** = 0.

Ξ

Retrofit of Occupancy Controls on Refrigerated Beverage Vending Machine, Example

Add occupancy sensors to two exiting soda vending machine where the amperage and voltage is unknown.

- AKWH = WATTS_{base} $/1000 \times HOURS \times ESF \times N.$
- From Table 3-UU, Watts base = 400 W; From Table 3-VV, ESF = 0.46.
- AKWH = 400/ 1000 x 8760 x 0.46 x 2 = 3,224 kWh.

Retrofit of On/Off timer on a Glass Refrigerated Cooler, Example

Add a timer to an existing cooler. Electric input to cooler is measured at 120 volts and 4.2 amps. Timer will shut the cooler of for 11 hours per day:

AKWH = WATTS_{base} /1000 x HOURS x ESF x N

$$\mathsf{ESF} = \left(1 - \frac{HOURS_{after}}{HOURS}\right) \times 0.45$$

HOURS_{after} = 8760 - (365 x11) = 4,745 hrs

$$\mathsf{ESF} = \left(1 - \frac{4745 hrs}{8760 hrs}\right) \times 0.45 = 0.2065$$

AKWH = 428/1000 x 8760 x 0.2065 x 1= 774 kWh

Changes from Last Version

No changes.

References

- [1] USA Technologies, Energy Savings Calculator Vending Machine USA TECH [Microsoft Excel], Jul. 2017.
- [2] Cooling Miser has the same ESF and Watts as Vending Misers. Based on correspondence and email from Bunny Proof, USA Technologies, Aug. 2017.

Notes

- [1] Assumed that the peak period is coincident with periods of high traffic diminishing the demand reduction potential of occupancy-based or time schedule-based controls.
- [2] The 45% factor to account for compressor cycling is based on NRM field experience and e-mail communication with Nick Gianakos, Jun. 27, 2010.

3.4.6 Add Doors to Open Refrigerated Display Cases

Description of Measure

Installation of glass doors on open refrigerated display cases. The savings from this measure are based on an ASHRAE research project (**Ref [1]**) that compared the energy consumption of a new open refrigerated display case to that of a new refrigerated display case with glass doors. Eversource/United Illuminating engineering utilized Table 7 of **Ref [1]** in the analysis that provided the savings factors below. A site inspection of a completed installation by the Companies' staff identified a gap (approx. ¼") between the doors that allowed infiltration between the case and the store. This analysis assumes that the losses from the gap are equivalent to the energy consumed by the door heat in Table 7 of **Ref [1**].

Inputs

Table 3-XX: Inputs

Symbol	Description
L	Length of Display Case

Nomenclature

Table 3-YY: Nomenclature

Symbol	Description	Units	Values	Comments
ACCF _H	Annual Gross Natural Energy Savings	ccf/yr		
AKWH	Annual Gross Electric Energy Savings	kWh/yr		
AOG _H	Annual Savings for Oil Heat	Gal/yr		
APG _H	Annual Savings for Propane Heat	Gal/yr		
L	Length of Display Case	Feet		
PD _H	Peak Day Natural Gas Savings	ccf		
SF _{AKWH}	Electric Energy Savings Factor	kWh/Foot		
SF _{ACCF}	Heating Savings Factor	ccf/Foot		
SF _{PD}	Peak Day Savings Factor	ccf/Foot		
SF _{SKW}	Summer Demand Savings Factor	kW/Foot		
SF _{WKW}	Winter Demand Savings Factor	kW/Foot		
SKW	Summer Demand Savings	kW	0	
WKW	Winter Demand Savings	kW		

Retrofit Gross Energy Savings, Electric

Table 3-ZZ: Electric Savings Factors

Door Type	SF _{skw}	SF _{wкw}	SF _{AKWH}
Door Heater	0	0.029	202.7
Gap	0	0.029	202.7

• **AKWH** = L x SF_{AKWH}

• <u>Note</u>: The SF values depend on whether there is a gap between the doors or if there are door heaters. It is assumed that the losses from the gap are equivalent to the energy consumed by the door heat so therefore they are the same for electric savings.

Retrofit Gross Seasonal Peak Demand Savings, Electric (Winter and Summer)

- **SKW** = L x SF_{SKW}; and
- **WKW** = $L x SF_{WKW}$.

Retrofit Gross Energy Savings, Fossil Fuel

Table 3-AAA: Natural Gas Savings Factors

Door Type	SF _{ACCF}	SF _{PD}
Door Heater	23.8	0.145
Gap	12.7	0.077

Note: The SF values depend on whether there is a gap between the doors or if there are door heaters.

 $ACCF_{H} = L \times SF_{ACCF}$

 $AOG_H = L \times SF_{ACCF} \times 0.742$

APG_H = L x SF_{ACCF} x 1.1267

Retrofit Gross Peak Day Savings, Natural Gas

$$PD_{H} = L \times SF_{PD}$$

Changes from Last Version

No changes.

References

[1] ASHRAE Research Project 1402. "*Comparison of Vertical Display Cases: Energy and Productivity of Glass Doors Versus Open Vertical Display Cases.*" Brian A. Fricke, Ph.D and Bryan R. Becker, Ph.D, P.E., Dec. 18, 2009.

SECTION FOUR: RESIDENTIAL

4.1 LIGHTING

4.1.1 Lighting

Description of Measure

Lighting savings are based on the replacement of low-efficiency light bulbs or luminaires with highefficiency ENERGY STAR-qualified LED bulbs or luminaires of equivalent lumen output.

Savings Methodology

The following assumptions are made to calculate savings for bulbs and luminaires. "Direct install" bulbs and luminaires are installed by vendors that have verified installation. "Retail" refers to bulbs and luminaires sold through retailers that do not have verified installation. Actual rated bulb wattage and location of both the existing and replacement bulbs is used to calculate savings for direct install. For retail, default (estimated) delta-watts and hours-of-use are used to calculate savings.

Inputs

Table 4-A: Inputs

Symbol	Description	
Watt _{post}	Rated Wattage of Installed or Purchased High-Efficiency Bulb	
Watt _{pre}	Rated Wattage of Low-Efficiency Bulb being Replaced by Direct Install	Watts
Location	Location of Direct Install Bulb. See Table 4-C for Available Options	

Nomenclature

Table 4-B: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH	Annual Electric Energy Savings	kWh/yr		Calculated
CFs	Average Summer Seasonal Peak Coincidence	unit-less	13.0%	Appendix One,
	Factor for Residential (Lighting)			Ref [3]
CFw	Average Winter Seasonal Peak Coincidence	unit-less	20.0%	Appendix One,
	Factor for Residential (Lighting)			Ref [3]
h _d	Daily Hours of Use, by Room Type for Direct	Hours per	Table 4-C for all	Ref [2]
	Install. For Lost Opportunity or Retail, use	day	known locations	
	"Unknown" as the Room Type		Retail: 2.7	
Lifetime	Measure Life of the Bulb	Years	Lifetime	Appendix Four
LKWH	Lifetime Electric Energy Savings	kWh		Calculated
SKW	Summer Demand Savings	kW		Calculated
Watt∆	Delta Watts, the Difference Between the	Watts (W)	Direct Install: based	Calculated
	Wattage of the Lower Efficiency Baseline		on reported values.	
	Bulb and the Wattage of the New Bulb. If		For Retail or	
	watt _{pre} is Unknown, and Assumed Value		unknown Direct	
			Install:	
			24 Watts (bulb)	
			26.3 Watts	
			(luminaire)	
Watt _{post}	Rated Wattage of High-Efficiency Bulb	Watts (W)	Input	
Watt _{pre}	Rated Wattage of Existing Low-Efficiency	Watts (W)	Input	Direct install
	Bulb			only
WKW	Winter Demand Savings	kW		Calculated

Retrofit and direct install savings calculation:

$$AKWH = 1.04 \times \frac{Watt_{\Delta} \times h_d \times 365}{1000} = 1.04 \times \frac{(Watt_{pre} - Watt_{post}) \times h_d \times 365}{1000}$$

<u>Note</u>: 1.04 is the average energy factor due to lighting interactive effect **Ref [1]**. Please refer to Table 4-C for the correct hours of use per day by location (hd).

For unknown wattage, light bulbs:

$$(Watt\Delta = Watt_{pre} - Watt_{post} = 24 watt)$$

For unknown wattage, luminaires:

$$(Watt \Delta = Watt_{pre} - Watt_{post} = 26.3 Watt)$$

Location	All Customers
	h _d
Bedroom	2.1
Bathroom	1.7
Kitchen	4.1
Living Room ⁺	3.3
Dining Room	2.8
Exterior	5.6
Other	1.7
Unknown†	2.7

Table 4-C: Hours of Use per Day by Location (h_d)*

* Ref [2], †

Retrofit Gross Energy Savings, Example

Example: A 45-Watt bulb is replaced with a 10-Watt LED bulb in the living room of a home by direct install. What is the annual savings?

Using the equations from above:

$$Watt\Delta = Watt_{pre} - Watt_{post}$$
$$AKWH = 1.04 \times \frac{Watt_{\Delta} \times h_d \times 365}{1000}$$
$$Watt\Delta = (45 - 10)$$
$$Watt\Delta = 35 Watts$$
$$AKWH = 1.04 \times (35 Watts) \times 3.3 \frac{hrs}{day} \times 365 \frac{days}{year} \div 1000 W/kw$$
$$AKWH = 43.844 \frac{kwh}{vr}$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

$$(Watt \Delta = Watt_{pre} - Watt_{post})$$

$$SKW = 1.05 \times \frac{Watt_{\Delta} \times CF_S}{1000}$$

 $WKW = \frac{Watt_{\Delta} \times CF_W}{1000}$

- 1.05 is an average capacity factor due to lighting interactive effect **Ref** [7].
- Values for CF_s and CF_w can be found in Appendix One as the Residential Lighting Coincidence Factors.

Retrofit Gross Peak Demand Savings, Example

Example: A 45-Watt bulb is replaced with a 10-Watt LED bulb in the living room of a home. What are the savings?

Watt
$$\Delta = Watt_{pre} - Watt_{post} = 45 - 10$$

 $Watt_{\Delta} = 35.0 Watts$
 $SKW = 1.05 \times 35.0 Watts \times 0.130 \div 1000 W/kW$
 $SKW = 0.005 kW$
 $WKW = 35.0 Watts \times 0.20 \div 1000 W/kW$
 $WKW = 0.007 kW$

Lost Opportunity Gross Energy Savings (for rebate and upstream), Electric

For bulb:

$$AKWH = 1.04 \times \frac{Watt_{\Delta} \times h_d \times 365}{1000} = 1.04 \times \frac{24.0 \times 2.7 \times 365}{1000}$$
$$AKWH = 24.598 \, kWh$$

For luminaire:

$$AKWH = 1.04 \times \frac{Watt_{\Delta} \times h_d \times 365}{1000} = 1.04 \times \frac{26.3 \times 2.7 \times 365}{1000}$$
$$AKWH = 27.07 \ kWh$$

Lost Opportunity Gross Energy Savings, Example

What are the electric energy savings when any LED bulb is purchased through a retailer?

AKWH = 24.598kWh

2019 Program Savings Document

Lost Opportunity Gross Peak Demand Savings, Example

For bulb:

$$SKW = 1.05 \times \frac{Watt_{\Delta} \times CFs}{1000} = 1.05 \times \frac{24.0 \times 0.13}{1000} = 0.003 \, kW$$
$$WKW = \frac{Watt_{\Delta} \times CFw}{1000} = \frac{24.0 \times 0.20}{1000} = 0.005 \, kW$$

For luminaire:

$$SKW = 1.05 \times \frac{Watt_{\Delta} \times CFs}{1000} = 1.05 \times \frac{26.3 \times 0.13}{1000} = 0.004 \, kW$$
$$WKW = \frac{Watt_{\Delta} \times CFw}{1000} = \frac{26.3 \times 0.20}{1000} = 0.005 \, kW$$

Non-Energy Benefits

Table 4-D: One-Time O&M Benefit per Bulb (Note [4]) and Lighting Interactive Effects (Note [10])

Bulb Type	O&M Benefit \$/Bulb (Note 1)	Lighting Interactive Effect Penalty (Note 2)
LED Bulb	\$3.00	-1902 Btu/kWh
LED Luminaire	4	Only applies to fossil fuel
LED Luminaire	\$4.00	heated homes

Changes from Last Version

• Reduced Delta Watts based on regression model.

References

- [1] Connecticut Residential Lighting Interactive Effect, NMR Group Inc., Dec. 2014, Table 1, p. 2.
- [2] NMR Group Inc., Connecticut LED Lighting Study Report (R154), Jan. 28, 2016, p. 30.
- [3] NMR Group Inc., Northeast Residential Lighting Hour-of Use Study, May 5, 2014, Table ES-7, page XVIII.

Notes

[1] One time O&M benefits are based on the avoided expense of replacement incandescent bulbs over the lifetime of the new bulb. Replacement assumptions and Incandescent bulb prices from Ref [3]. [2] The Lighting interactive effect penalty is based on the results from Connecticut Residential Lighting Interactive Effects Memo, Completed by NMR Group Inc., Dec. 20, 2014. Penalty to be applied to non-electric benefits when planning.

4.2 HVAC

4.2.1 ENERGY-EFFICIENT CENTRAL AIR CONDITIONING

Description of Measure

Installation of an energy-efficient Central Air Conditioning ("CAC") system and replacement of a working inefficient A/C system.

Savings Methodology

Lost opportunity measure:

Lost Opportunity Savings are the difference in energy use between a baseline new model (Note
 [3]) and the chosen high-efficiency new model, continuing for the Effective Useful Life ("EUL") from Appendix Four.

Retrofit measure:

- Uses the same methodology as a Lost Opportunity measure.
- In the case of early retirement of a working unit where the unit would have otherwise been installed until failure, lifetime "Retirement" savings are claimed additional to the lifetime "Lost Opportunity" savings (see Section 1.4).
- Retirement Savings are the difference in energy use between the older unit (Note [2]) and a baseline new model (Note [3]), continuing for the Remaining Useful Life ("RUL") from Appendix Four.

Savings are based on the CAC Impact and Process Evaluation (**Ref [1]**). This regional study metered the usage of recently installed residential A/C units in New England. Using these measurements, the study provided factors and equations (see below) to calculate the savings using the installed capacity and the Energy Efficiency Ratio ("EER").

Inputs

Table 4-E: Inputs

Symbol	Description	Units
CAP _{C,i}	Installed Cooling Capacity of New Unit	Tons
EERi	Installed EER of New Unit	Btu/Watt-hr
EERe	Existing EER of Old Unit	Btu/Watt-hr

Nomenclature

Table 4-F: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH _C	Annual Electric Energy Savings - Cooling	kWh		
ASF	Annual Savings Factor	kWh/ton	362	Ref [1]
CAP _{C,i}	Installed Cooling Capacity	Tons		Input
DSF	Seasonal Demand Savings Factor	kW/ton	0.45	Ref [1]
EER _b	Baseline EER, Representing Baseline New Model	Btu/Watt-hr	11	Note [1]
EER _e	Existing EER of Removed Unit	Btu/Watt-hr	Use 8 if existing EER is not known	Note [2]
EERi	Installed EER of New Efficient Unit	Btu/Watt-hr		Input
EUL	Effective Useful Life	Years	18	Appendix Four
LKWH _c	Lifetime Electric Energy Savings - Cooling	kWh		
RUL	Remaining Useful Life	Years	5	Appendix Four
SKWc	Summer Seasonal Demand Savings - Cooling	kW		
Retire	Associated with Retirement			
···Lost Opp	Associated with Lost Opportunity			

Retrofit Gross Energy Savings, Electric

<u>Reminder</u>: Retrofit savings are the sum of Retirement savings and Lost Opportunity savings. This section presents the Retirement portion of savings while the Lost Opportunity portion of the savings is presented further on in this measure.

To obtain the lifetime savings, the following formula should be used:

$$LKWH_{C, Total} = AKWH_{C, Retire} \times RUL + AKWH_{C, Lost Op} \times EUL$$

Retirement component:

$$AKWH_{C, \text{ Retire}} = ASF \times CAP_{C,i} \times \left(1 - \frac{EER_e}{EER_b}\right)$$

The equation simplifies when the existing EER is not known:

$$AKWH_{C,Retire} = 362 \, kwh/_{Ton} \times CAP_{C,i} \times \left(1 - \frac{8}{11}\right) = 98.73 \times CAP_{C,i}$$

Retrofit Gross Energy Savings, Example

An existing working central A/C is replaced by an energy-efficient unit. The new installed unit has a 3 ton cooling capacity, at 13.0 EER. What are the annual energy savings?

To calculate the lost opportunity component, use the equation from "Lost Opportunity":

$$AKWH_{C,Lost \ Opp} = 362 \ kwh/_{Ton} \times CAP_{C,i} \times \left(\frac{EER_i}{11} - 1\right)$$

Input the new unit's cooling capacity and rated EER:

$$AKWH_{C,Lost \ Opp} = 362 \ kwh/_{Ton} \times 3 \ tons \times \left(\frac{13}{11} - 1\right) = 197.45 \ kWh$$

Because the existing unit is verified to be in working condition, use the Retirement equation to calculate annual Retirement savings (a constant times the new unit's cooling capacity):

 $AKWH_{C,Retire} = 98.73 \times CAP_{C,i}$ $AKWH_{C,Retire} = 98.73 \times 3 = 296.19 \, kWh$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

<u>**Reminder**</u>: Retrofit savings are the sum of Retirement Savings and Lost Opportunity Savings. This section presents the Retirement portion of savings while the Lost Opportunity portion of the savings is presented further on in this measure.

Retirement component:

$$SKW_{C, \text{ Retire}} = DSF \times CAP_{C,i} \times \left(1 - \frac{EER_e}{EER_b}\right)$$

The equation simplifies when the existing EER is not known:

$$SKW_{C,Retire} = 0.45 \ kwh/_{Ton} \times CAP_{C,i} \times \left(1 - \frac{8}{11}\right) = 0.123 \times CAP_{C,i}$$

<u>Note</u>: There is no need to apply a coincidence factor as coincidence is already factored into the demand equation.

Retrofit Gross Peak Demand Savings, Example

What are the summer demand savings for the above retrofit example?

Using the equation for Lost Opportunity Savings (summer demand), input the size and efficiency of the new unit:

$$SKW_{C,Lost \ Opp} = 0.45 \ \frac{kwh}{Ton} \times CAP_{C,i} \times \left(\frac{EER_i}{11} - 1\right)$$
$$SKW_{C,Lost \ Opp} = 0.45 \ \frac{kwh}{Ton} \times 3 \times \left(\frac{13}{11} - 1\right) = 0.245 \ kW$$

Using the equation for Retirement summer demand savings, input the cooling capacity in tons:

$$SKW_{C,Retire} = 0.123 \times CAP_{C,i}$$

$$SKW_{C,Retire} = 0.123 \times 3 = 0.369 \, kW$$

Lost Opportunity Gross Energy Savings, Electric

$$AKWH_{C,Lost \ Opp} = ASF \times CAP_{C,i} \times \left(\frac{EER_i}{EER_b} - 1\right)$$
$$AKWH_{C,Lost \ Opp} = 362 \ \frac{kwh}{Ton} \times CAP_{C,i} \times \left(\frac{EER_i}{11} - 1\right)$$

Lost Opportunity Gross Energy Savings, Example

A rebate is provided for the installation of a new energy-efficient unit. The old unit is unknown. The new installed unit has a 3 ton cooling capacity, 13.0 EER. What are the annual savings?

To calculate annual savings, use the Lost Opportunity equation:

$$AKWH_{C,Lost \,Opp} = 362 \, \frac{kwh}{Ton} \times CAP_{C,i} \times \left(\frac{EER_i}{11} - 1\right)$$

Input the new unit's cooling capacity and rated EER:

$$AKWH_{C,Lost\ Opp} = 362\ kwh/_{Ton} \times 3\ tons \quad \times \left(\frac{13}{11} - 1\right) = 197.45\ kWh$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

$$SKW_{C,Lost \ Opp} = DSF \times CAP_{C,i} \times \left(\frac{EER_i}{EER_b} - 1\right)$$

$$SKW_{C,Lost \ Opp} = 0.45 \ kwh/_{Ton} \times CAP_{C,i} \times \left(\frac{EER_i}{11} - 1\right)$$

<u>Note</u>: There is no need to apply a coincidence factor as coincidence is already factored into the demand equation.

Lost Opportunity Gross Peak Demand Savings, Example

A rebate is provided for the installation of a new energy-efficient unit. The old unit is unknown. The new installed unit has a 3 ton cooling capacity, 13.0 EER. What are the annual demand savings?

Using the equation for Lost Opportunity demand savings:

$$SKW_{C,Lost \ Opp} = 0.45 \ \frac{kwh}{Ton} \times CAP_{C,i} \times \left(\frac{EER_i}{11} - 1\right)$$

Input the size and efficiency of the new unit:

$$SKW_{C,Lost \ Opp} = 0.45 \ kwh/_{Ton} \times 3 \times \left(\frac{13}{11} - 1\right) = 0.245 \ kW$$

Changes from Last Version

No changes.

References

[1] Central Air Conditioning Impact and Process Evaluation, NMR, May 30, 2017.

Notes

- [1] Ref [1], NMR Central Air Conditioning Impact and Process Evaluation pp. I to III. "Because there were no instances of early replacement of CAC units in the monitoring sample, the baseline for estimating savings is the minimum standard for new installations, namely 11 EER."
- [2] EER for the existing unit is estimated based on average installed efficiency for an approximately 15-year-old unit. ASHRAE/IESNA Standard 90.1-1999 Table 6.2.1A has a minimum requirement of 10 SEER for 2011. Note: Units of that vintage were only rated on SEER. EER is approximately 80% of SEER (Ref [1], p. ES-1 gives the ratio 11 EER/14 SEER). 8 EER is used as the estimated existing efficiency.

4.2.2 HEAT PUMP

Description of Measure

Installation of an energy-efficient air source heat pump and replacement of a working, less-efficient electric heating system, including heat pumps and electric resistance heating.

Savings Methodology

Lost Opportunity measure:

• Lost Opportunity savings are the difference in energy use between a baseline new model (<u>Note</u>: [1]and the chosen high-efficiency new model, continuing for the EUL from Appendix Four.

Retrofit measure:

- Uses the same methodology as a Lost Opportunity measure.
- In the case of early retirement of a working unit where the unit would have otherwise been installed until failure, lifetime "Retirement" savings are claimed additional to the lifetime "Lost Opportunity" savings (see Section 1.5).
- Retirement savings are the difference in energy use between the older unit (Note [2]) and a baseline new model (Note [1]), continuing for the RUL from Appendix Four.

The savings methodology presented here is for heating only; cooling savings from an efficient heat pump are the same as the cooling savings for an efficient central air conditioner, as presented in measure 4.2.1 of the 2019 PSD.

<u>Note</u>: The savings here do not apply to a Ductless Heat Pump; see Measure 4.2.12 for Ductless Heat Pump methodology.

Inputs

Table 4-G: Inputs

Symbol	Description	Units
CAP _{H,i}	Installed Heating Capacity	Btu/hr
HSPF _e	Heating Season Performance Factor of Existing Unit (AHRI-Verified)	Btu/Watt-hr
HSPFi	Heating Season Performance Factor, Installed Unit (AHRI-Verified)	Btu/Watt-hr
	Existing Heating System Type	

Nomenclature

Table 4-H: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH	Annual Electric Energy Savings	kWh		
CAP _{H,i}	Installed Heating Capacity	Btu/hr		Input
EFLH _H	Heating Equivalent Full-Load Hours	Hours	1349	Note [3]
HSPF _b	Heating Season Performance Factor,	Btu/Watt-hr	8.2	Note [1]
	Baseline, Representing Baseline New			
	Model			
HSPF _e	Heating Season Performance Factor,	Btu/Watt-hr	Use 6.8 if	Note [2]
	Existing (AHRI-Verified)		HSPF existing	
			is not known;	
			3.41 for	
			electric	
			resistance	
			heat	
HSPF _i	Heating Season Performance Factor,	Btu/Watt-hr		Input
	Installed (AHRI-Verified)			
SKW	Summer Demand Savings	kW		
WKW	Winter Demand Savings	kW		

Retrofit Gross Energy Savings, Electric

<u>Reminder</u>: Retrofit savings are the sum of Retirement Savings and Lost Opportunity Savings. This section presents the Retirement portion of savings while the Lost Opportunity portion of the savings is presented further on in this measure.

To obtain the Lifetime savings, the following formula should be used:

$$LKWH_{C, Total} = AKWH_{C, Retire} \times RUL + AKWH_{C, Lost Opp} \times EUL$$

Early Retirement component:

$$AKWH_{H,Retire} = EFLH_H \times CAP_{H,i} \times \left(\frac{1}{HSPF_e} - \frac{1}{HSPF_b}\right) \times \frac{1}{1000^{W_{kW}}}$$

The equation simplifies when the existing HSPF is not known:

$$AKWH_{H,Retire} = 1349 \ hrs/_{yr} \times CAP_{H,i} \times \left(\frac{1}{6.8} - \frac{1}{8.2}\right) \times \frac{1}{1000} = 0.03281 \times CAP_{H,i}$$

<u>Cooling</u>: If the unit also provides cooling, calculate savings as presented in Central A/C measure (4.2.1). **Retrofit Gross Energy Savings, Example**

A new air source heat pump with both heating and cooling capacity of 36,000 Btu/hr, HSPF_i of 9.00, SEER of 15.50, and EER of 13.0 is installed in a home to replace an old working heat pump with heating capacity of 36,000 Btu/hr, and HSPF_e of 6.

To calculate the lost opportunity component for heating, use the equation from "Lost Opportunity":

$$AKWH_{H, LostOpp} = EFLH_{H} \times CAP_{H,i} \times \left(\frac{1}{HSPF_{b}} - \frac{1}{HSPF_{i}}\right) \times \frac{1}{1000}$$

Input the HSPF and heating capacity of the new heat pump:

$$AKWH_{H,LostOpp} = 1349 \, \frac{hrs}{yr} \times 36,000 \times \left(\frac{1}{8.2} - \frac{1}{9.0}\right) \times \frac{1}{1000} = 526 \, kWh$$

Because the existing unit is verified to be in working condition, use the Retirement equation to calculate annual Retirement savings, using the capacity of the new unit and HSPF of the existing unit.

$$AKWH_{H, \text{ Retire}} = EFLH_H \times CAP_{H,i} \times \left(\frac{1}{HSPF_e} - \frac{1}{HSPF_b}\right) \times \frac{1}{1000^{W/_{kW}}}$$
$$AKWH_{H,Retire} = 1349 \frac{hrs}{yr} \times CAP_{H,i} \times \left(\frac{1}{6.8} - \frac{1}{8.2}\right) \times \frac{1}{1000} = 1,219 \text{ kWh}$$

Because the HP also provides cooling; calculate cooling savings as presented in the Central A/C measure (4.2.1).

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

- Heating: WKW= 0; Note [4]; and
- **Cooling:** If the unit also provides cooling, calculate demand savings as presented in Central A/C measure (4.2.1).

Lost Opportunity Gross Energy Savings, Electric

$$AKWH_{H,LostOpp} = EFLH_H \times CAP_i \times \left(\frac{1}{HSPF_b} - \frac{1}{HSPF_i}\right) \times \frac{1}{1000}$$
$$AKWH_{H,LostOpp} = 1349 \ hrs/yr \times CAP_i \times \left(\frac{1}{8.2} - \frac{1}{HSPF_i}\right) \times \frac{1}{1000}$$

<u>Cooling</u>: If the unit also provides cooling, calculate savings as presented in Central A/C measure (4.2.1).

Lost Opportunity Gross Energy Savings, Example

A rebate is provided for the installation of a new air source heat pump with an installed cooling capacity of 36,000 Btu/hr and HSPF of 9. What are the annual electric heating and cooling savings?

Using the Lost Opportunity equation, input the capacity and HSPF of the new unit:

$$AKWH_{H,LostOpp} = 1349 \frac{hrs}{yr} \times CAP_i \times \left(\frac{1}{8.2} - \frac{1}{HSPF_i}\right) \times \frac{1}{1000}$$
$$AKWH_{H,LostOpp} = 1349 \frac{hrs}{yr} \times 36,000 \times \left(\frac{1}{8.2} - \frac{1}{9.0}\right) \times \frac{1}{1000} = 526 \ kWh$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

- Heating: WKW= 0; Note [4].
- **Cooling:** If the unit also provides cooling, calculate demand savings as presented in Central A/C measure (4.2.1).

Changes from Last Version

No change.

References

- National Climatic Data Center. Divisional Data Select, http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp.
- [2] 1989 ASHRAE Fundamentals, Chapter 28: Energy Estimating Methods, page 28.2 Fig. 1: Correction Factor versus Degree-Days.
- [3] 1989 ASHRAE Fundamentals, 24.6 Table 1: Climatic Conditions for the United States: Connecticut: Hartford, Brainard Field.
- [4] McQuiston, Faye C.; Jerald D. Parker; Jeffrey D. Spitler. <u>Heating, Ventilating, and Air</u> <u>Conditioning: Analysis and Design</u>, Fifth Edition, Chapter 7: Space Heating Load, p. 192. ISBN 0-471-35098-2.

Notes

- [1] The federal minimum standard for heat pumps is HSPF 8.2, as of Jan. 1, 2015.
- [2] In 1992, the federal government established the minimum heating efficiency standard for new heat pumps at 6.8 HSPF.
- [3] Equivalent Full Load Hours estimated as follows:

$$\mathsf{EFLH}_{\mathsf{H}} = \left(\frac{24 \times HDD \times AF}{T_{OC} - T_{IC}}\right) = \left(\frac{24 \times 5885 \times 0.64}{70 - 3}\right) = 1349 \; \mathsf{hr/yr}$$

Where:

- 24 = conversion between degree-days to degree-hours.
- HDD = 5885 = 30-year average annual degree days, data from Ref [1] for CT, Jan. 1979 to Dec. 2008.
- AF = 0.64 = ASHRAE degree day correction factor to account for occupant behavior from Ref [2].
- Toc = 3° F = outdoor heating design temperature for Hartford, Brainard Field at 99% level from Ref [3].
- Toc = 70° F = indoor heating design temperature, Ref [4].
- WKW = 0; Demand savings are not claimed for this measure since backup resistance heat on the heat pump would most likely be used during winter seasonal peak periods.

4.2.3 GEOTHERMAL HEAT PUMP

Description of Measure

Installation and commissioning of a high-efficiency closed loop DX geothermal heat pump system.

Savings Methodology

Savings are determined using the results of "HVAC Systems in an ENERGY STAR Home: Owning & Operating Costs (Update 2008)" (**Ref [1**]) as a basis for the calculation. The report analyzed the annual consumption of geothermal heat pumps. To calculate savings for this measure, the results from the study are adjusted based on size (in tons) and efficiencies (COP and EER).

<u>Note</u>: The savings baseline is an ENERGY STAR Tier 1 geothermal system.

Inputs

Symbol	Description	Units
	Type of Geothermal System (closed loop/DX) Water-to-	
	Water or Water-to-Air	
CAPi	Installed Cooling Rated Capacity	Tons
EERi	EER - Installed	Btu/Watt-hr
COPi	COP - Installed	

Table 4-I: Inputs

Nomenclature

Table 4-J: Nomenclature

Symbol	Description	Units	Values	Comments
AH _{CDH}	Annual Heating Energy Usage per Ton	kWh/ton/yr	1,569	Ref [1]
AHb	Annual Heating Energy Usage, Baseline	kWh/yr		
AHi	Annual Heating Energy Usage, Installed	kWh/yr		
AC _{CDH}	Annual Cooling Energy Usage per Ton	kWh/ton/yr	326	Ref [1]
ACb	Annual Cooling Energy Usage, Baseline	kWh/yr		
ACi	Annual Cooling Energy Usage, Installed	kWh/yr		
CAPi	Installed Cooling Capacity in Tons	Tons		Input
CF _C	Coincidence Factor, Residential Cooling		0.59	Appendix
				One
CF _H	Coincidence Factor, Residential Heating		0.50	Appendix
				One
COPb	COP - Baseline		Table 4-K	ENERGY
				STAR Tier 1
COP _{CDH}	EER Used to Model Consumption in the		3.9	Ref [1]
	CDH Study			
COPi	COP - Installed			Input
EER _{CDH}	EER Used to Model Consumption in the	Btu/Watt-hr	17.2	Ref [1]
	CDH Study			
EERb	EER - Baseline	Btu/Watt-hr	Table 4-K	ENERGY
				STAR Tier 1
EERi	EER - Installed	Btu/Watt-hr		Input
SKWc	Summer Seasonal Demand Savings	kW		
SKW _{CDH}	Summer kW per Ton	kW/ton	0.71	Ref [1]
WKW _H	Winter Seasonal Demand Savings	kW		

Lost Opportunity Gross Energy Savings, Electric

The annual consumption per ton and efficiencies per cooling capacity (tons) are as follows (Ref [1]):

- **AH**_{CDH} = 1,569 kWh/Ton at 3.9 COP;
- **AC_{CDH}** = 326 kWh/ton at 17.2 EER; and
- **SKW_{CDH}** = 0.71 kW/ton.

System Type	EER _b	COP _b
Closed Loop Water to Air	14.1	3.3
Closed Loop Water to Water	15.1	3.0
DGX	15.0	3.5

Table 4-K: Baseline Efficiencies (ENERGY STAR Tier 1) Reference [2]

$$AKWH_{C} = \left(AC_{b} - AC_{i}\right)$$

$$\begin{aligned} AKWH_{C} &= CAP_{i} \times AC_{CDH} \times \left(\frac{EER_{CDH}}{EER_{b}} - \frac{EER_{CDH}}{EER_{i}}\right) \\ AKWH_{C} &= CAP_{i} \times 326 \times \left(\frac{17.2}{EER_{b}} - \frac{17.2}{EER_{i}}\right) \\ AKWH_{H} &= \left(AH_{b} - AH_{i}\right) \end{aligned}$$
$$\begin{aligned} AKWH_{H} &= CAP_{i} \times AH_{CDH} \times \left(\frac{COP_{CDH}}{COP_{b}} - \frac{COP_{CDH}}{COP_{i}}\right) \\ AKWH_{H} &= CAP_{i} \times 1,569 \times \left(\frac{3.9}{COP_{b}} - \frac{3.9}{COP_{i}}\right) \end{aligned}$$

$$AKWH = AKWH_{C} + AKWH_{H}$$

Lost Opportunity Gross Energy Savings, Example

A 3 ton closed loop geothermal heat pump is installed with an EER of 20.2 and COP of 4.2. What are the energy savings?

$$AKWH_{C} = CAP_{i} \times AC_{CDH} \times \left(\frac{EER_{CDH}}{EER_{b}} - \frac{EER_{CDH}}{EER_{i}}\right)$$
$$AKWH_{C} = 3 \times 326 \times \left(\frac{17.2}{14.1} - \frac{17.2}{20.2}\right) = 360kWh$$
$$AKWH_{H} = 3 \times 1,569 \times \left(\frac{3.9}{3.3} - \frac{3.9}{4.2}\right) = 1,192kWh$$
$$AKWH = 360 + 1,192 = 1,552kWh$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

$$SKW_{C} = CAP_{i} \times SKW_{CDH} \times \left(\frac{EER_{CDH}}{EER_{b}} - \frac{EER_{CDH}}{EER_{i}}\right) \times CF_{C}$$
$$SKW_{C} = CAP_{i} \times 0.71 \times \left(\frac{17.2}{EER_{b}} - \frac{17.2}{EER_{i}}\right) \times CF_{C}$$
$$WKW_{H} = CAP_{i} \times \frac{12,000}{3,412} \times \left(\frac{1}{COP_{b}} - \frac{1}{COP_{i}}\right) \times CF_{H}$$

Changes from Last Version

No change.

References

- [1] HVAC Systems in an ENERGY STAR Home: Owning & Operating Costs (Update 2008), CDH Energy Corp, 2008, Tables 3 and 4.
- [2] ENERGY STAR Tier 1 Geothermal Heat Pumps Key Product Criteria. <u>https://www.energystar.gov/ia/partners/product_specs/program_reqs/Geothermal_Heat_Pumps_Program_Requirements.pdf</u>. Accessed Jun. 6, 2018.

4.2.6 ECM HVAC FAN

Description of Measure

Installation of an electronically commutated motor ("ECM") or brushless permanent magnet motor ("BPM") when installed as part of a new high-efficiency HVAC system or as a new ECM replacement on an existing HVAC system.

Savings Methodology

Savings for this measure are calculated based on a typical home. These deemed savings are based on results **Ref [1]**.

Demand savings were derived from interval data adjusted to historical ISO-NE seasonal peak hours and Normalized NOAA weather.

Inputs

Table 4-L: Inputs

Symbol	Description	Units
	Number of Systems with ECMs Installed	
	Heating Fuel Type	

Nomenclature

Table 4-M: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH _H	Annual Electric Energy Savings During Heating Season	kWh/yr	321	Ref [1]
AKWHc	Annual Electric Energy Savings During Cooling Season	kWh/yr	45	Ref [1]
PkW _c	kW Savings – Cooling Mode	kW	0.065	Ref [1], Note [2]
PkW _H	kW Savings – Heating Mode	kW	0.118	Ref [1]
SKW	Summer Demand Savings	kW		
WKW	Winter Demand Savings	kW		

Lost Opportunity Net Energy Savings, Electric

 $AKWH_{H} = 321 kWh$ $AKWH_{C} = 45 kWh$

Lost Opportunity Net Demand Savings, Electric

References

[1] CT HVAC and Water Heating Process and impact Evaluation Report, West Hill Energy and Computing, R164/1613 R, Jul. 19, 2018.

Notes

- [1] Kw savings are derived from AMI data used in **Ref** [1].
- [2] Summer kwh and kW values are based on the assumption form **Ref** [1] that 60% of home in CT with furnaces have central air conditioning.

4.2.9 Duct Sealing

Description of Measure

Duct sealing to improve efficiency of air distribution from HVAC systems. Savings are verified by measuring outside duct leakage at 25 Pascal using standard duct blaster testing procedures and blower door; other advanced sealing techniques can be used.

Savings Methodology

Duct improvements (sealing) should be verified with duct blaster test at 25 Pa using an approved test method. Note that a blower door is required as part of this test to maintain 25 Pa in the house in order to isolate duct leakage to the outside. Alternative test methods (i.e., subtraction method, flow hood method, delta Q, etc.) will generally yield inconsistent results and therefore are not permitted. Duct infiltration reduction was simulated using REM/Rate, a residential energy analysis, and rating software (**Ref [1]**). For all duct sealing, savings may be subject to a final analysis which may include a billing analysis, calibration, engineering models, or other applicable methods.

<u>Reminder</u>: Heating savings may not be claimed if ducts are not used for heating distribution. For instance, a home with electric baseboard resistance heating or a fossil fuel boiler which has ducts used only for the central air conditioner may only claim cooling savings.

Inputs

Symbol	Description	Units
A	Heated Area Served by System (required only for ADS measures)	А
CFM _{Pre}	Verified Air Leakage Rate at 25 Pa Before Duct Sealing	CFM_{Pre}
CFM _{Post}	Verified Air Leakage Rate after Duct Sealing at 25 Pa (not required for	CFM _{Post}
	ADS savings)	
	Heating Fuel Type (e.g., electric resistance, heat pump, natural gas,	
	oil, propane, etc.)	
	Heating System Distribution Type (e.g., forced air with fan, heat	
	pump, resistance, radiator, etc.)	

Table 4-N: Inputs

Nomenclature

Symbol	Description	Units	Values	Comments
А	Heated Area Served by System	ft ²	Actual	
ACCF	Annual Natural Gas Savings	ccf/yr		
AKWH _H	Annual Electric Energy Savings, Heating	kWh/yr		
AKWH _C	Annual Electric Energy Savings, Cooling	kWh/yr		
AOG	Annual Oil Savings	Gal/yr		
APG	Annual Propane Savings	Gal/yr		
CFM _{Pre}	Air Leakage Rate Before Duct Sealing at 25 Pa	CFM	Actual	Note [1]
CFM _{Post}	Air Leakage Rate After Duct Sealing at 25 Pa	CFM	Actual	Note [2]
SKW	Summer Demand Savings	kW		
WKW	Winter Demand Savings	kW		
PDн	Natural Gas Peak Day Savings - Heating	ccf		
PDF _H	Natural Gas Peak Day Factor - Heating		0.00977	Appendix
				One
REM	Savings Modeled using Residential Energy	per CFM		Ref [1]
	Modeling Software			

Table 4-O: Nomenclature

Retrofit Gross Energy Savings, Electric

Table 4-P: Electric Duct Blaster Savings, kWh per CFM Reduction at 25 Pa (Note [3])

	$REM_{Heating}$ for Heating			REM _{AH}	$REM_{Cooling}$
	Electric Forced Air	Heat Pumps	Geothermal	Heating Fan (Note [3])	Central A/C Cooling
Savings per CFM Reduction	7.693	3.847	2.564	1.100	1.059

For electric (forced air), heat pump, or geothermal heating systems:

$$AKWH_{H} = REM_{Heating} \times (CFM_{Pre} - CFM_{Post})$$

For fossil fuel heating with air handler unit:

$$AKWH_{H} = REM_{AH} \times (CFM_{Pre} - CFM_{Post})$$

Home with central A/C:

$$AKWH_{H} = REM_{Cooling} \times (CFM_{Pre} - CFM_{Post})$$

Retrofit Gross Energy Savings, Fossil Fuel

Table 4-Q: Fossil Fuel Duct Blaster Savings per CFM Reduction at 25 Pa (Note [4])

	Heating	Gallons Oil –	Natural Gas –	Gallons Propane –
	(MMBtu)	Gallons (REM _{oil})	Ccf (REM _{NG})	Gallons (REM _{Propane})
Savings per CFM Reduction	0.035	0.252	0.340	0.383

For homes with natural gas heating system:

$$ACCF_{H} = REM_{NG} \times (CFM_{Pre} - CFM_{Post})$$

For homes with oil heating system:

$$AOG_{H} = REM_{Oil} \times (CFM_{Pre} - CFM_{Post})$$

For homes with propane heating system:

$$APG_{H} = REM_{Propane} \times (CFM_{Pre} - CFM_{Post})$$

Retrofit Gross Energy Savings, Example

Duct sealing at 25 Pa was performed in a 2,400 ft² 1960's ranch style home in Hartford, Conn. The home is primarily heated by a natural gas furnace and cooled by Central A/C. The outside duct leakage readings at 25 Pa showed CFM_{Pre} of 850 and CFM_{Post} of 775. What are the energy savings for this home? *Note: This home has fossil fuel, air handler (fan), and cooling savings.*

Using the equation for natural gas heating savings:

$$ACCF_{H} = REM_{NG} \times (CFM_{Pre} - CFM_{Post})$$
$$ACCF_{H} = 0.340 \times (850 - 775)$$
$$ACCF_{H} = 25.5 Ccf$$

Using the equation for electric heating fan savings:

$$AKWH_{H} = REM_{AH} \times (CFM_{Pre} - CFM_{Post})$$
$$AKWH_{H} = 1.100 \times (850 - 775)$$
$$AKWH_{H} = 82.5 \, kWh$$

Using the equation for central A/C savings:

$$AKWH_{C} = REM_{Cooling} \times (CFM_{Pre} - CFM_{Post})$$
$$AKWH_{C} = 1.059 \times (850 - 775)$$
$$AKWH_{C} = 79.4 \ kWh$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

	REM _{WKW} for Heating			REM _{skw}	
	Electric Forced Air	Heat Pump	Geothermal	Everything Else	Central A/C Cooling
Savings per CFM Reduction	0.0158	0.0158	0.0053	0	0.0023

Table 4-R: Electric Duct Blaster Savings, kW per CFM Reduction at 25 Pa (Note [3])

 $WKW_{H} = REM_{WKW} \times (CFM_{Pre} - CFM_{Post})$ $SKW_{C} = REM_{SKW} \times (CFM_{Pre} - CFM_{Post})$

<u>**Reminder**</u>: Demand savings are based on design load calculation in REM software; there is no need to use coincidence factors.

Retrofit Gross Seasonal Peak Demand Savings, Natural Gas

$$PD_H = ACCF_H \times PDF_H$$

Retrofit Gross Peak Demand Savings, Example

Duct sealing at 25 Pa was performed in a 2,400 ft² 1960's ranch style home in Hartford, Conn. The home is primarily heated by a heat pump and cooled by Central A/C. The outside duct leakage readings at 25 Pa showed CFM_{Pre} of 850 and CFM_{Post} of 775. What are the peak demand savings for this home?

2019 Program Savings Document

Using the equation for heat pump winter demand:

$$(\text{REM}_{\text{WKW}} = 0.0158 \text{ kW per CFM})$$
$$WKW_{H} = REM_{WKW} \times (CFM_{\text{Pr}e} - CFM_{Post})$$
$$WKW_{H} = 0.0158 \times (850 - 775)$$
$$WKW_{H} = 1.19 \text{ kW}$$

Using the equation for summer demand savings (REMSKW = 0.0023 kW per CFM):

$$SKW_{C} = REM_{SKW} \times (CFM_{Pre} - CFM_{Post})$$
$$SKW_{C} = 0.0023 \times (850 - 775)$$
$$SKW_{C} = 0.173 \, kW$$

If the home in this example has a natural gas furnace, instead of a heat pump, what are the natural gas peak day savings?

Using the formula for Peak Day Natural Gas:

$$PD_{H} = ACCF_{H} \times PDF_{H}$$
$$PD_{H} = 25.5 \times 0.00977 = 0.249 \ Ccf$$
$$PD_{H} = 0.249 \ Ccf$$

Changes from Last Version

No changes.

References

- [1] REM/Rate[™] version 12.99 is a residential energy analysis, code compliance, and rating software developed by Architectural Energy Corporation. This software calculates heating, cooling, hot water, lighting, and appliance energy loads, consumption and costs for new and existing single and multi-family homes. Duct blaster energy savings analysis using REM was performed by C&LM Planning team, Eversource & United Illuminating, Aug. 2010.
- [2] Residential Central A/C Regional Evaluation, ADM Associates, Inc., Final Report, Nov. 2009.

Notes

[1] If the duct leakage to the outside has been measured and verified prior to performing ADS (such as CFM_{post} from a recent duct blaster test), this value shall be used for CFM_{pre}. If this

value is not available, use the following: $CFM_{pre} = 0.195 \frac{CFM}{sqft} \times A$, based on the average CFM_{pre} from all Home Energy Solutions duct sealing projects in 2011.

- [2] Actual measured air flow CFM to outside shall be used for CFM_{post} whenever possible. In the case of ADS, if air flow to the outside is unavailable but the 2012 IECC specification has been met, CFM_{post} may be calculated based on the heated area served by the system: CFMpost=0.04 X A.
- [3] Fan energy savings are only to be captured for forced-air systems with an air handling unit (fan).
- [4] Fossil fuel savings include estimated expected system efficiency of 75% including combustion and distribution.

4.2.12 HEAT PUMP – DUCTLESS

Description of Measure

Installation of energy-efficient Ductless Heat Pump ("DHP").

Savings Methodology

Savings methodology is based on *Ductless Mini-split Heat Pump Impact Evaluation*, Dec. 30, 2016, Cadmus (**Ref [1]**). Energy savings for DHPs are determined by:

- Savings based on equivalent full hours from the study
- or by performing a custom analysis such as DOE-2 or Billing analysis [PRISM] (Note [2] & [3]) for a specific project. If a custom analysis is done, the savings will be capped at 50% of the heating portion of the billing history.

A DHP installed in an existing home with electric resistance heating system is considered to have Retrofit savings. A DHP installed in a home with fossil fuel heating system is considered to have Lost Opportunity savings (or new construction).

<u>Note</u>: The savings here are not to be applied to a heat pump with ducting. Only systems without ducts are addressed by this measure. The savings are independent of the number of zones (air handlers) installed.

Inputs

Table 4-S: Inputs

Symbol	Description
HSPF ₁	Heating Season Performance Factor, Installed
SEER	Seasonal Energy Efficiency Ratio, Installed
CAP _C	Nominal Cooling Capacity, Btu/hr
CAP _H	Nominal Heating Capacity, Btu/hr

Nomenclature

Table 4-T: Nomenclature

Symbol	Description	Units	Values	Comments
1 Ton	Capacity, Nominal Tonnage	Tons	12,000 Btu/hr	Unit
				conversion
AKWH	Annual Electric Energy Savings	kWh		
CAP _C	Nominal Cooling Capacity	Btu/hr		Input
CAP _H	Nominal Heating Capacity	Btu/hr		Input
$EFLH_{H}$	Equivalent Full Load Hours – Heating	hr	442	Ref [1] , p. 6
$EFLH_{C}$	Equivalent Full Load Hours – Cooling	hr	218	Ref [1] , p. 6
HSPF _B	Heating Season Performance Factor, Baseline	Btu/Watt-hr	8.2 – Lost	Ref [2]
			Opportunity	
HSPF _E	Heating Season Performance Factor, Existing	Btu/Watt-hr	3.413 –	Note [1]
			Retrofit	
HSPF ₁	Heating Season Performance Factor,	Btu/Watt-hr		Input
	Installed			
SEER _B	Seasonal Energy Efficiency Ratio, Baseline	Btu/Watt-hr	14.0– Lost	Ref [2]
			Opportunity	
SEERE	Seasonal Energy Efficiency Ratio, Existing	Btu/Watt-hr	10.1 -	Note [1]
			Retrofit	
SEER	Seasonal Energy Efficiency Ratio, Installed	Btu/Watt-hr		Input
SKW	Summer Demand Savings	kW		
SCF	Summer Coincident Factor		0.181	Ref [1] , p. 60
WKW	Winter Demand Savings	kW		
WCF	Winter Coincidence Factor		0.12	Ref [1] , p. 60

Retrofit Gross Energy Savings, Electric

Heating:

$$AKWH_{H} = CAP_{H} \times \left(\frac{1}{HSPF_{E}} - \frac{1}{HSPF_{I}}\right) \times EFLH_{H} \times \frac{1}{1000}$$

Cooling:

$$AKWH_{C} = CAP_{C} \times \left(\frac{1}{SEER_{E}} - \frac{1}{SEER_{I}}\right) \times EFLH_{C} \times \frac{1}{1000}$$

Retrofit Gross Energy Savings, Example

An energy-efficient ductless heat pump ("DHP") is installed in an existing home with electric resistance heat. The nominal heating capacity is 24,000 Btu, and the nominal cooling capacity is 24,000 Btu, installed HSPF is 11, and the installed SEER is 22. The system has two zones. What are the annual electric heating and cooling savings?

Using the equation for annual electric heating savings:

$$AKWH_{H} = CAP_{H} \times \left(\frac{1}{HSPF_{E}} - \frac{1}{HSPF_{I}}\right) \times EFLH_{H} \times \frac{1}{1000}$$
$$AKWH_{H} = 24,000 \times \left(\frac{1}{3.413} - \frac{1}{11}\right) \times 442 \times \frac{1}{1,000} = 2,143 \ kWh$$

Using the equation for annual electric cooling savings:

$$AKWH_{C} = CAP_{C} \times \left(\frac{1}{SEER_{E}} - \frac{1}{SEER_{I}}\right) \times EFLH_{C} \times \frac{1}{1000}$$
$$AKWH_{C} = 28,000 \times \left(\frac{1}{10.1} - \frac{1}{22}\right) \times 218 \times \frac{1}{1000} = 327kWh$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

Winter demand savings:

$$WKW = CAP_{H} \times \left(\frac{1}{HSPF_{E}} - \frac{1}{HSPF_{I}}\right) \times WCF \times \frac{1}{1000}$$

Summer demand savings:

$$SKW = CAP_{C} \times \left(\frac{1}{SEER_{E}} - \frac{1}{SEER_{I}}\right) \times SCF \times \frac{1}{1000}$$

Retrofit Gross Peak Demand Savings, Example

An energy-efficient ductless heat pump ("DHP") is installed in an existing home with electric resistance heat. The rated heating capacity is 24,000 Btu, rated cooling capacity is 24,000 Btu, installed HSPF is 11, and the installed SEER is 22. What are the annual summer and winter demand savings?

Using the equation for summer demand savings:

$$SKW = CAP_{C} \times \left(\frac{1}{SEER_{E}} - \frac{1}{SEER_{I}}\right) \times SCF \times \frac{1}{1000}$$
$$SKW = 24,000 \times \left(\frac{1}{10.1} - \frac{1}{22}\right) \times 0.181 \times \frac{1}{1000} = 0.23kW$$

Using the equation for winter demand savings:

$$WKW = CAP_{H} \times \left(\frac{1}{HSPF_{E}} - \frac{1}{HSPF_{I}}\right) \times WCF \times \frac{1}{1000}$$
$$WKW = 24,000 \times \left(\frac{1}{3.413} - \frac{1}{11}\right) \times 0.12 \times \frac{1}{1000} = 0.58kW$$

Lost Opportunity Gross Energy Savings, Electric

Heating:

$$AKWH_{H} = CAP_{H} \times \left(\frac{1}{HSPF_{B}} - \frac{1}{HSPF_{I}}\right) \times EFLH_{H} \times \frac{1}{1000}$$

Cooling:

$$AKWH_{C} = CAP_{C} \times \left(\frac{1}{SEER_{B}} - \frac{1}{SEER_{I}}\right) \times EFLH_{C} \times \frac{1}{1000}$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

Winter demand savings:

$$WKW = CAP_{H} \times \left(\frac{1}{HSPF_{B}} - \frac{1}{HSPF_{I}}\right) \times WCF \times \frac{1}{1000}$$

Summer demand savings:

$$SKW = CAP_C \times \left(\frac{1}{SEER_B} - \frac{1}{SEER_I}\right) \times SCF \times \frac{1}{1000}$$

Changes from Last Version

No changes.

References

[1] Ductless Mini-Split Heat Pump Study, Final Report, Cadmus, Dec. 30, 2016, (Table ES-3 p. 5).

Notes

- [1] The minimum heating efficiency standard set by federal government effective Jan. 1, 2015 for ductless heat pumps is 8.2 HSPF and cooling efficiency is 14.0 SEER.
- [2] PRISM is an established statistical procedure for measuring energy conservation in residential housing. The PRISM software package was developed by the Center for Energy and Environmental Studies, Princeton University. The tool is used for estimating energy savings from billing data. Available at: <u>http://www.princeton.edu/~marean/</u>.
- [3] DOE-2 is a widely used and accepted building energy analysis program that can predict the energy use and cost for all types of buildings. DOE-2 uses a description of the building layout, constructions, operating schedules, conditioning systems (such as lighting & HVAC), and utility rates provided by the user, along with weather data, to perform an hourly simulation of the building and to estimate utility bills. Available at: http://www.doe2.com/.

4.2.13 PACKAGE TERMINAL HEAT PUMP

Description of Measure

Installation of new energy-efficient packaged terminal heat pump.

Savings Methodology

The savings methodology for a package terminal heat pump ("PTHP") is calculated from the baseline efficiencies in **Ref** [1].

Lost Opportunity Measure:

• Lost Opportunity savings are the difference in energy use between a baseline new model and the chosen high-efficiency new model, continuing for the Effective Useful Life ("EUL") from Appendix Four.

Retrofit Measure:

- Uses the same methodology as a Lost Opportunity measure.
- In the case of early retirement of a working unit where the unit would have otherwise been installed until failure, lifetime "Retirement" savings are claimed additional to the lifetime "Lost Opportunity" savings (see Section 1.4).
- Retirement savings are the difference in energy use between the older unit and a baseline new model, continuing for the Remaining Useful Life ("RUL") from Appendix Four.

Cumph al	Description	Linite
Symbol	Description	Units
EERi	Energy Efficiency Ratio, Installed	Btu/Watt-hr
CAP _C	Cooling Capacity	Btu/hr
EER _E	Energy Efficiency Ratio, Existing	Btu/Watt-hr
EER _B	Energy Efficiency Ratio, Baseline	Btu/Watt-hr
COPB	Coefficient of Performance Baseline	Btu/Watt-hr
COPE	Coefficient of Performance Existing	Watt/Watt
COPI	Coefficient of Performance Installed	Watt/Watt

Inputs

Table 4-U: Inputs

Nomenclature

Table 4-V: Nomenclature

Symbol	Description	Units	Values	Comments
1 Ton	Capacity, Nominal Tonnage	Tons	12,000 Btu/hr	Unit conversion
AKWH	Annual Electric Energy Savings	kWh		
CAP _C	Cooling Capacity	Btu/hr		Input
COPB	Coefficient of Performance, Baseline	Watt/Watt		Ref [1]
COPE	Coefficient of Performance, Existing	Watt/Watt		Input
EERB	Energy Efficiency Ratio, Baseline	Btu/Watt-hr		Ref [1]
EERE	Energy Efficiency Ratio, Existing	Btu/Watt-hr		Input
EER	Energy Efficiency Ratio, Installed	Btu/Watt-hr		Input
EFLH _H	Heating Equivalent Full-Load Hours	hours	1349	Ref [3]
HR	Percent heating when Heat Pump is Not in Electric Resistance Back Up		60%	Note[1]
PTHP	Packaged Heat Pump Terminal			
S _{kWh}	Average Cooling kWh Savings per Unit Size	kWh/Ton	362.0	Ref [2]
S _{kW}	Average Peak kW Savings per Unit Size	kW/Ton	0.45	Ref [2]
SA	Seasonal Efficiency Adjustment for Heating		80%	Note[2]
SKW	Summer Demand Savings	kW		
WKW	Winter Demand Savings	kW	0	Note[3]

Retrofit Gross Energy Savings, Electric

Heating:

a) For replacement of old PTHP, use the following equations:

AKWH_H = HR × EFLH_H ×
$$CAP_C \times \left(\frac{1}{COP_E} - \frac{1}{COP_B}\right) \times \frac{1}{3412}$$

Where, COP_B = 2.9 - $\left(0.026 \times CAP_C \times \frac{1}{1,000}\right)$

b) For replacement of electric resistance system, use the following equations:

$$AKWH_{\rm H} = HR \times EFLH_{\rm H} \times CAP_{\rm C} \times \left(1 - \frac{1}{SA \times COP_{\rm B}}\right) \times \frac{1}{3412}$$

Where, $COP_{\rm B} = 2.9 \cdot \left(0.026 \times CAP_{\rm C} \times \frac{1}{1,000}\right)$

Cooling:

$$AKWH_{C} = S_{kWh} \times CAP_{C} \times \left(\frac{EER_{B}}{EER_{E}} - 1\right) \times \frac{1}{12,000}$$
$$AKWHC=362.0 \times CAP_{C} \times \left(\frac{EER_{B}}{EER_{E}} - 1\right) \times \frac{1}{12,000}$$
$$Where, EER_{B} = 10.8 \cdot \left(0.213 \times CAP_{C} \times \frac{1}{1,000}\right)$$

<u>Reminder</u>: For working unit, claim additional lost opportunity savings.

Retrofit Gross Energy Savings, Example

A new Package Terminal Heat Pump with cooling capacity of 12,000Btu/hr, $EER_I=12.5$, and $COP_I=3.6$ is installed in an existing home equipped with old working PTHP with cooling capacity of 12,000 Btu/hr, $EER_E=7.8$, and $COP_E=2.5$.

Heating:

$$AKWH_{H} = HR \times EFLH_{H} \times CAP_{C} \times \left(\frac{1}{COP_{E}} - \frac{1}{COP_{B}}\right) \times \frac{1}{3412}$$

Where, $COP_{B} = 2.9 - \left(0.026 \times 12,000 \times \frac{1}{1,000}\right) = 2.59$
$$AKWH_{H} = 0.6 \times 1349 \times 12,000 \times \left(\frac{1}{2.5} - \frac{1}{2.59}\right) \times \frac{1}{3,412} = 39.55 \ kWh$$

Cooling:

$$AKWHc = 362.0 \times CAP_{C} \times \left(\frac{EER_{B}}{EER_{E}} - 1\right) \times \frac{1}{12,000}$$

Where, EER_B = 10.8 - $\left(0.213 \times CAP_{C} \times \frac{1}{1,000}\right)$

EER_B = 10.8 -
$$\left(0.213 \times 12,000 \times \frac{1}{1,000}\right) = 8.24$$

AKWH_C = 362.0 × 12,000 × $\left(\frac{8.24}{7.8} - 1\right) \times \frac{1}{12,000} = 20.42kW$

<u>Reminder</u>: For working unit, claim additional Lost Opportunity Savings.

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

• WKW = 0; Note [3].

$$SKW_{C} = S_{kW} \times CAP_{C} \times \left(\frac{EER_{B}}{EER_{E}} - 1\right) \times \frac{1}{12,000}$$
$$SKW_{C} = 0.45 \times CAP_{C} \times \left(\frac{EER_{B}}{EER_{E}} - 1\right) \times \frac{1}{12,000}$$
Where, EER_B = 10.8 - $\left(0.213 \times CAP_{C} \times \frac{1}{1,000}\right)$

Retrofit Gross Peak Demand Savings, Example

A new PTHP with cooling capacity of 1Ton/hr, $EER_I=12.5$, and $COP_I=3.6$ is installed in an existing home equipped with old working PTHP with cooling capacity of 1Ton/hr, $EER_E=7.8$, and $COP_E=2.5$.

• WKW= 0.

$$SKW_{C} = 0.45 \times CAP_{C} \times \left(\frac{EER_{B}}{EER_{E}} - 1\right) \times \frac{1}{12,000}$$

Where, $EER_{B} = 10.8 \cdot \left(0.213 \times 12,000 \times \frac{1}{1,000}\right) = 8.24$
$$SKW_{C} = 0.45 \times 12,000 \times \left(\frac{8.24}{7.8} - 1\right) \times \frac{1}{12,000} = 0.025kW$$

Lost Opportunity Gross Energy Savings, Electric

Heating:

$$AKWH_{H} = HR \times EFLH_{H} \times CAP_{C} \times \left(\frac{1}{COP_{B}} - \frac{1}{COP_{I}}\right) \times \frac{1}{3412}$$

Where,
$$\text{COP}_{\text{B}} = 3.2 \cdot \left(0.026 \times CAP_{C} \times \frac{1}{1,000} \right)$$

Cooling:

AKWH_c = 362.0 ×
$$CAP_c \times \left(\frac{EER_I}{EER_B} - 1\right) \times \frac{1}{12,000}$$

Where, EER_B = 12.3 - $\left(0.213 \times CAP_c \times \frac{1}{1,000}\right)$

Lost Opportunity Gross Energy Savings, Example

A PTHP is installed in a new construction project; the cooling capacity 12,000 Btu/hr, $EER_1 = 12.5$, and $COP_1 = 3.6$.

Heating:

$$AKWH_{H} = HR \times EFLH_{H} \times CAP_{C} \times \left(\frac{1}{COP_{B}} - \frac{1}{COP_{I}}\right) \times \frac{1}{3412}$$

Where, $COP_{B} = 3.2 - \left(0.026 \times 12,000 \times \frac{1}{1,000}\right) = 2.88$
$$AKWH_{H} = 0.6 \times 1349 \times 12,000 \times \left(\frac{1}{2.88} - \frac{1}{3.6}\right) \times \frac{1}{3412} = 197.7kWh$$

Cooling:

AKWH_c = 357.6 × CAP_c ×
$$\left(\frac{EER_I}{EER_B} - 1\right)$$
 × $\frac{1}{12,000}$
Where, EER_B = 12.3 - $\left(0.213 \times 12,000 \times \frac{1}{1,000}\right)$ = 9.74
AKWH_c = 362.0 × 12,000 × $\left(\frac{12.5}{9.74} - 1\right)$ × $\frac{1}{12,000}$ = 102.6kWh

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

WKW= 0
SKW_C =
$$0.45 \times CAP_C \times \left(\frac{EER_I}{EER_B} - 1\right) \times \frac{1}{12,000}$$

Where, EER_B =
$$12.3 - \left(0.213 \times \text{CAP}_{\text{C}} \times \frac{1}{1,000}\right)$$

Lost Opportunity Gross Peak Demand Savings, Example

A PTHP is installed in a new construction project; the cooling capacity 12,000 Btu/hr, $EER_1 = 12.5$, $COP_1 = 3.6$, and WKW = 0.

$$SKW_{C} = 0.45 \times CAP_{C} \times \left(\frac{EER_{I}}{EER_{B}} - 1\right) \times \frac{1}{12,000}$$

Where, EER_B = 12.3 - $\left(0.213 \times CAP_{C} \times \frac{1}{1,000}\right)$
EER_B = 12.3 - $\left(0.213 \times 12,000 \times \frac{1}{1,000}\right) = 9.74$
SKW_C = 0.45 × 12,000 × $\left(\frac{12.5}{9.74} - 1\right) \times \frac{1}{12,000} = 0.128kW$

Changes from Last Version

No changes.

References

- [1] "Technical Support Document (TSD): Energy Efficiency Program for Commercial and Industrial Equipment: Efficiency Standards for Commercial Heating, Air Conditioning and Water Heating Equipment," Table 1, Chapter 2, p. 4.
- [2] Average Cooling kWh Savings per unit size = 357.6 kWh/ton, Average peak kW Savings per unit size = 0.591 kW/ton and based on "Residential Central A/C Regional Evaluation, ADM Associates Inc.," Tables 4-7 and 4-8, pp. 4-9.
- [3] EFLH_H =1,349 hours; Based on Heating Degree Day ("HDD") data and ASHRAE adjustment factor.

Notes

- [1] HR = 60%, is percent heating when the heat pump is not in electric resistance back up, based on Hartford, Conn. BIN analysis.
- [2] SA = 80%, is COP adjustment factor for temperatures below 47°F, based on Hartford BIN analysis.

[3] Winter demand savings are not claimed for this measure since backup resistance heat on the heat pump would most likely be used during winter seasonal peak periods.

4.2.14 QUALITY INSTALLATION VERIFICATION

Description of Measure

Perform quality installation and verification ("QIV") of a residential central air ducted system as described by ENERGY STAR.

Savings Methodology

ENERGY STAR Quality Installation Guidelines are based on the Air Conditioning Contractors of America's ("ACCA") HVAC Quality Installation Specification (**Ref [2]** and **Ref [3]**) and is recognized as an American National Standard. For new homes, the ENERGY STAR Inspection Checklist for National Programs Requirements V3.0 would be used (**Ref [4]** and **Ref [5]**).

These industry best practices help ensure that HVAC equipment is:

- **1**. Correctly sized to meet customer home's needs;
- 2. Connected to a well-sealed duct system;
- 3. Operating with sufficient airflow in the system; and
- 4. Installed with the proper amount of refrigerant.

Estimated savings potential (Table 4-W) with Quality Installation ranges from 18% to 36% for air conditioners and heat pumps and 11% to 18% for furnaces (**Ref [6]**). A new residential central air conditioner uses 357.6 kWh per ton annually (**Ref [1]**). The cooling and heating savings are a percentage of total cooling and heating energy consumption.

	Cooling	Heating
Refrigerant Charge	2-6%	
Airflow	2-5%	
Sizing	3-7%	
Duct Sealing	11-18%	11-18%
Total	18-36%	11-18%

Table 4-W: QIV, Performed with New Residential Air Conditioning System Installation, ENERGY STAR Savings Potential

Due to these variations, the QIV savings being estimated for this measure (Table 4-X) are based on the low-end of the range.

Table 4-X: Estimated QIV Savings

	Cooling	Heating
Refrigerant Charge	2%	
Airflow	2%	
Sizing	3%	
Duct Sealing	11%	11%
Total	18%	11%

Inputs

Table 4-Y: Inputs

Symbol	Description
CAP _C	Nominal Cooling Capacity, Btu
Ton	Capacity of the Equipment Converted to Tons

Nomenclature

Table 4-Z: Inputs

Symbol	Description	Units	Values	Comments
ACCF _H	Annual Natural Gas Savings, Heating			
AKWH _C	Annual Electric Cooling Savings	kWh		
AKWH _H	Annual Electric Heating Savings	kWh		
AOG _H	Annual Oil Savings, Heating	Gal		
APG _H	Annual Propane Savings, Heating	Gal		
CAP _C	Cooling Capacity	Btu		Input
PDF _H	Natural Gas Peak Day Factor - Heating		0.00977	Appendix Two
PD _H	Natural Gas Peak Day Savings – Heating	ccf		
SKW	Summer Demand Savings	kW		
Ton	Capacity of the Equipment Converted to Tons	tons		Input
WKW	Winter Demand Savings	kW		

Retrofit Gross Energy Savings, Electric

Cooling savings (Note [1]):

$$AKWH_{C} = 64.37 \times \frac{CAP_{C}}{12,000^{BTU}/_{ton}}$$

Heating savings:

Using the results of 39.34 kWh duct sealing savings from the above equation and the relationship of savings from Table 4-P in PSD Measure 4.2.9. Duct Sealing, the CFM reduction can be calculated as follows:

From Measure 4.2.9, cooling savings per CFM reduction is 1.059 kWh. Therefore, for 39.34 kWh savings, there is a 37.15 CFM reduction.

$$CFM_{Savings} = \frac{39.34}{1.059} = 37.15 \, \text{CFM}_{ton}$$

Using 4.2.9 duct sealing savings and based on system type the savings can be summarized in Table 4-AA below.

System Type	AKWH _c	AKWH _H
Central A/C	$64.37 \times \frac{CAP_{C}}{12,000}$	
Heat Pump	$64.37 \times \frac{CAP_{c}}{12,000}$	$142.9 \times \frac{CAP_{C}}{12,000}$
Geothermal Heat Pump	$64.37 \times \frac{CAP_{c}}{12,000}$	$92.25 \times \frac{CAP_{c}}{12,000}$
Furnace (Fan Electric Savings)		$40.86 \times \frac{CAP_{c}}{12,000}$

Table 4-AA: Savings Calculation

Retrofit Gross Energy Savings, Fossil Fuel

$$ACCF_{H} = 13.3 \times \frac{CAP_{C}}{12,000}$$
$$AOG_{H} = 9.3 \times \frac{CAP_{C}}{12,000}$$
$$APG_{H} = 14.2 \times \frac{CAP_{C}}{12,000}$$

Retrofit Gross Energy Savings, Example

A 1980's home has a combination natural gas furnace with a 36,000 Btu (3 tons) central air conditioning system. QIV is performed on the systems. What are the energy savings?

Using the equation for cooling savings:

$$AKWH_{C} = 64.37 \times \frac{CAP_{C}}{12,000}$$
$$AKWH_{C} = 64.37 \times \frac{36,000}{12,000} = 193.1kWh$$

Using the equation for heating fan energy:

$$AKWH_{H} = 40.86 \times \frac{CAP_{C}}{12,000}$$
$$AKWH_{H} = 40.86 \times \frac{36,000}{12,000} = 122.58 kWh$$

Using the equation for natural gas heating:

$$ACCF_{H} = 13.3 \times \frac{CAP_{C}}{12.000}$$

$$ACCF_{H} = 13.3 \times \frac{36,000}{12,000} = 39.9ccf$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

The new residential central air conditioners use 0.591 kW per ton (Ref [1]). Therefore:

Annual Summer kW Savings = Percent Savings x 0.591 x Tons

$$SKW = 0.106 \times \frac{CAP_c}{12,000}$$

Using the CFM savings from Section 5 and peak savings per CFM from PSD Measure 4.2.9, the winter demand savings for heat pumps only are as follows:

$$WKW = 0.587 \times \frac{CAP_C}{12,000}$$

Retrofit Gross Peak Day Savings, Natural Gas

$$PD_H = ACCF_H \times PDF_H$$

Retrofit Gross Peak Demand Savings, Example

A 1980's home has a 36,000 Btu (3 tons) heat pump system. QIV is performed on the system. What are the summer and winter demand savings?

For cooling savings:

$$SKW = 0.106 \times \frac{CAP_C}{12,000}$$

$$SKW = 0.106 \times \frac{36,000}{12,000} = 0.32kW$$

For heat pump savings:

$$WKW = 0.587 \times \frac{CAP_C}{12,000}$$

$$WKW = 0.587 \times \frac{36,000}{12,000} = 1.76kW$$

Changes from Last Version

No changes.

References

- [1] Residential Central A/C Regional Evaluation, ADM Associates, Inc., Nov. 2009, pp. 4-9, p. ES-4.
- [2] ACCA. 2010. HVAC Quality Installation Specification Standard 5. Air Conditioning Contractors of America, Arlington, VA.
- [3] ACCA. 2011. HVAC Quality Installation Verification Protocols Standard 9. Air Conditioning Contractors of America, Arlington, VA.
- [4] ENERGY STAR Homes National Programs Requirement V3.0, <u>www.energystar.gov</u>.
- [5] ENERGY STAR Homes Inspection Checklist, <u>www.energystar.gov</u>.
- [6] ENERGY STAR Quality Installation, Revised Jun. 1, 2013, Available at http://www.energystar.gov/index.cfm?c=hvac_install.hvac_install_index.

Notes

• The average new residential central air conditioners use 357.6 kWh per ton annually (Ref [1]).

Annual cooling kWh savings = Percent savings x 357.6 x Tons, where:

Annual cooling savings (Refrigerant Charge)	= 2% x 357.6 x tons = 7.15 x tons
Annual cooling savings (Airflow)	= 2% x 357.6 x tons = 7.15 x tons
Annual cooling savings (Sizing)	= 3% x 357.6 x tons = 10.73 x tons
Annual cooling savings (Duct Sealing)	= 11% x 357.6 x tons = 39.34 x tons, where;
Total cooling savings	= 18% x 357.6 x tons =64.37 AKWH _c /ton

$$Ton = \frac{CAP_{C}}{12,000 \text{ }^{BTU}/_{ton}}$$
$$AKWH_{C} = 64.37 \times \frac{CAP_{C}}{12,000 \text{ }^{BTU}/_{ton}}$$

4.2.15 DUCT INSULATION

Description of Measure

Installation of insulation with an R-value greater than or equal to 6 on un-insulated heating or cooling ducts in unconditioned space (i.e., attic and unconditioned basement) in order to reduce heating and cooling losses.

Savings Methodology

Heating and cooling savings per square foot of insulated duct were modeled using "3E Plus Insulation" software (**Ref [2]**) under four different scenarios of duct location (i.e., supply basement, return basement, supply attic, and return attic), under typical conditions listed in **Note [1]**.

Cooling savings should be reported for homes equipped with central A/C using the same duct being insulated.

<u>Note</u>: A duct insulation project should be custom if the actual conditions vary significantly from the typical case presented in this measure (temperature conditions in **Note [1]**, R-value about 6). In such a situation, the 3E Plus tool (**Ref [2]**) and a similar methodology should be used to develop estimates of the appropriate energy savings.

For all duct sealing, savings may be subject to a final analysis which may include a billing analysis, calibration, engineering models, or other applicable methods.

<u>Reminder</u>: Heating savings may not be claimed if ducts are not used for heating distribution; for instance, a home with electric baseboard resistance heating or a fossil fuel boiler which has ducts used only for the central A/C.

Inputs

Table 4-BB: Inputs

Symbol	Description	Units
А	Surface Area of Duct Area Being Insulated	ft ²
	System/Fuel Type (e.g., heat pump, natural gas furnace, oil furnace, central A/C, etc.)	
	Duct Location:	
	- Supply duct in unconditioned basement	
	- Return duct in unconditioned basement	
	- Supply duct in attic	
	- Return duct in attic	
	Heating System Distribution Type (e.g., forced air with fan, heat pump, resistance,	
	radiator, etc.)	

Nomenclature

Table 4-CC: Nomenclature

Symbol	Description	Units	Values	Comments
А	Surface Area of Duct Being Insulated	ft ²		Input
ACCF	Annual Natural Gas Savings	ccf		
AKWH	Annual Electric Energy Savings	kWh		
AOG	Annual Oil Savings	Gal		
APG	Annual Propane Savings	Gal		
DI _H	Annual Heating Savings per Square Foot	various	Tables 4-EE	Ref [2]
			& 3	
DIc	Annual Cooling Savings per Square Foot	various	Tables 4-EE	Ref [2]
			& 3	
PD _H	Natural Gas Peak Day Savings - Heating	ccf		
PDF _H	Natural Gas Peak Day Factor - Heating		0.00977	Appendix
				Two
SKW	Summer Demand Savings	kW		
SPF	Summer Peak Factor	W/kWh	0.017	Ref [1]
WKW	Winter Demand Savings	kW		
WPF	Winter Peak Factor	W/kWh	0.570	Ref [1]

Retrofit Gross Energy Savings, Electric

Duct Location	Heating Coolir		ng	
	DI _H	Unit	Dlc	Unit
Supply Basement	13.05	kWh/ ft ²	0.7721	kWh/ ft ²
Return Basement	3.150	kWh/ ft ²	0.2327	kWh/ ft ²
Supply Attic	14.46	kWh/ ft ²	1.425	kWh/ ft ²
Return Attic	4.194	kWh/ ft ²	0.8209	kWh/ ft ²

Table 4-DD: Annual Savings per ft² for Homes with Heat Pump or Central A/C

Heating savings, electric heat pumps:

$$AKWH_H = DI_H \times A$$

If central A/C or heat pump providing cooling:

 $AKWH_C = DI_C \times A$

Retrofit Gross Energy Savings, Fossil Fuel

Table 4-EE: Annual Savings per ft² for Homes with Fossil Fuel

Duct Location	Heating Savings per ft ²		
	DIH	Unit	
Supply Basement	0.1187	MMbtu/ ft ²	
Return Basement	0.02866	MMbtu/ ft ²	
Supply Attic	0.1316	MMbtu/ ft ²	
Return Attic	0.03816	MMbtu/ ft ²	

For homes with a natural gas furnace:

$$ACCF_H = \frac{DI_H \times A}{0.10290}$$

For homes with an oil furnace:

$$AOG_H = \frac{DI_H \times A}{0.13869}$$

For homes with a propane furnace:

$$APG_H = \frac{DI_H \times A}{0.09133}$$

<u>Reminder</u>: Cooling savings can be claimed for homes equipped with central A/C.

Retrofit Gross Energy Savings, Example

A Cape Cod style home has a gas furnace. It is also equipped with a central A/C system for cooling. 50 ft² of insulation was installed on the supply duct in the unconditioned basement. What are the annual energy savings?

$$ACCF_{H} = \frac{DI_{H} \times A}{0.10290}$$
$$ACCF_{H} = \frac{0.1187 \times 50 \ ft^{2}}{0.10290} = 57.68 \ Ccf$$

Since the house is equipped with central A/C, there are cooling savings too:

$$AKWH_C = DI_C \times A$$
$$AKWH_C = 0.7721 \times 50 \text{ ft}^2 = 38.61 \text{ kWh}$$

Retrofit Gross Seasonal Peak Day Savings, Electric (winter and summer)

Winter seasonal peak demand (kW) will be claimed for homes equipped with a heat pump:

$$WKW = \frac{WPF \times DI_H \times A}{1,000^{W/_{kW}}}$$

Summer seasonal peak demand (kW) will be claimed for homes equipped with central A/C:

$$SKW = \frac{SPF \times DI_C \times A}{1,000 \, W_{kW}}$$

Retrofit Gross Peak Day Savings, Natural Gas

For homes with a natural gas furnace:

$$PD_H = ACCF_H \times PDF_H$$

Retrofit Gross Peak Demand Savings, Example

What are the peak demand savings for the above retrofit example?

Using the formula for peak day natural gas:

 $PD_{H} = ACCF_{H} \times PDF_{H}$ $PD_{H} = 57.68 \times 0.00977 = 0.564 Ccf$

Cooling demand savings may also be claimed:

$$SKW = \frac{SPF \times DI_C \times A}{1,000 \, W_{kW}}$$
$$SKW = \frac{0.017 \times 0.7721 \times 50 \, ft^2}{1,000 \, W_{kW}} = 0.000656 \, kW$$

Changes from Last Version

No changes.

References

- [1] Evaluation of the Weatherization Residential Assistance Partnership (WRAP) and Helps Programs, conducted by KEMA, Sep. 2010, Table ES-9, pp. 1-11.
- [2] North American Insulation Manufacturers Association ("NAIMA"), 3E Plus software tool, Version 4.1, Rel. 2012.

Notes

[1]

Table 4-FF: Assumed Temperature Conditions

Duct Location	Season	Ambient Temp (°F)	Supply Air Temp (°F)	Return Air Temp (°F)
Attic	Heating	30	130	65
	Cooling	120	50	80
Basement	Heating	50	130	65
	Cooling	70	50	80

4.2.17 BOILER

Description of Measure

Installation of an energy-efficient boiler.

Savings Methodology

The fossil fuel savings for this measure are calculated using the equation from a boilers results Connecticut (**Ref [1]**). Hot water savings are also estimated. Hot water savings are calculated based on the hot water load used in Water Heater Measure 4.5.7.

Energy savings resulting from the removal of units in working condition are calculated as follows:

Lost Opportunity measure:

Lost Opportunity savings are calculated according then installed AFUE based on verified savings data from **Ref [1]**.

Retrofit measure:

Retrofit measures use the same methodology as a Lost Opportunity measure. In the case of early retirement of a working unit, where the unit would have otherwise been installed until failure, lifetime "Retirement" savings are claimed additional to the lifetime "Lost Opportunity" savings Retirement savings are the difference in energy use between the older unit and a baseline model (Note [1]), continuing for the Remaining Useful Life ("RUL") from Appendix Four.

Inputs

Table 4-GG: Inputs

Symbol	Description	Units
	Heating Fuel (e.g., natural gas, oil, and propane)	
AFUE _E	AFUE, Existing (if available)	%
AFUE ₁	AFUE, Installed	%

Nomenclature

Table 4-HH: Nomenclature

Symbol	Description	Units	Values	Comments
AF	Adjustment Factor		0.98	Use for
				condensing Boilers Ref [1]
ABTU _H	Annual Btu Savings - Heating	Btu/yr		Dollers Ner [1]
ACCF	Annual Natural Gas Savings	ccf/yr		
ACCF _H	Annual Natural Gas Savings - Heating	ccf/yr		
ACCFw	Annual Natural Gas Savings - Water Heating	ccf/yr		
ADHW	Annual Domestic Water Heating Load	Btu/yr	11,197,132	From Water
				Heater (Measure
				4.5.7)
AFUEB	Annual Fuel Utilization Efficiency, Baseline	%	85%	Ref (1)
			Gas/Propane	
AFUE _F	Annual Fuel Utilization Efficiency, Existing	%	84% - Oil Actual Rated	
AFUE	Annual Fuel Othization Eniciency, Existing	/0	85% or .85 if	
			unknown	
AFUE _I	Annual Fuel Utilization Efficiency, Installed	%		Input
EUL	Effective Useful Life			Appendix Four
HF	Average Heating Factor Based on Home's Heat	Btu/		Ref [1]
	Load	Year	85,200,000	
PD	Natural Gas Peak Day Savings	ccf/yr		
PD _H	Natural Gas Peak Day Savings – Heating	ccf/yr		
PDw	Natural Gas Peak Day Savings – Water Heating	ccf/yr		
PDF _H	Natural Gas Peak Day Factor – Heating		0.00977	Appendix One
PDFw	Natural Gas Peak Day Factor – Water Heating		0.00321	Appendix One
RUL	Remaining Useful Life			Appendix Four

Lost Opportunity Gross Energy Savings, Fossil Fuel

Savings by heating fuel:

$$ABTU_{H} = HF \times \left(\frac{1}{AFUE_{B}} - \frac{1}{AFUE_{I}x0.98}\right) = 85,200,000 \times \left(\frac{1}{.85} - \frac{1}{AFUE_{I}x0.98}\right)$$
$$ACCF_{H} = \frac{ABTU_{H}}{102,900^{Bu}/_{Cef}}$$
$$AOG_{H} = \frac{ABTU_{H}}{138,690^{Bu}/_{Gal}}$$

$$APG_{H} = \frac{ABTU_{H}}{91,330^{Btu}/_{Gal}}$$

Water heating savings by water heating fuel:

$$ABTU_{W} = 11,197,132 \times \left(\frac{1}{AFUE_{B}} - \frac{1}{AFUE_{I}x0.98}\right)$$
$$ACCF_{W} = \frac{ABTU_{W}}{102,900^{Btu}/Cef}$$
$$ACCF_{W} = \frac{ABTU_{W}}{138,690^{Btu}/Cef}$$
$$ACCF_{W} = \frac{ABTU_{W}}{91,330^{Btu}/Cef}$$

Lost Opportunity Gross Energy Savings, Example

A boiler is installed in a natural gas heated home. The installed boiler has an $AFUE_1 = 95\%$ or 0.95.

$$\begin{split} ABTU_{H} &= 85,200,000 \times \left(\frac{1}{0.85} - \frac{1}{AFUE_{I}X0.98}\right) = 85,200,000 \times \left(\frac{1}{0.85} - \frac{1}{0.95x0.98}\right) \\ ABTU_{H} &= 8,622,390.89 \ Btu \\ ACCF_{H} &= \frac{8,622,390.89 \ Btu}{102,900 \ ^{Btu}/_{Cef}} \\ ACCF_{H} &= 83.8 \ Cef \end{split}$$

Water heating:

$$\begin{split} ABTU_{W} &= 11,197,132 \times (\frac{1}{AFUE_{B}} - \frac{1}{AFUE_{I}x0.98}) = 11,197,132 \times (\frac{1}{.85} - \frac{1}{.95x0.98}) \\ ABTU_{W} &= 1,333,170Btu \\ ACCF_{W} &= \frac{1,133,170Btu}{102,900^{Bu}/_{Cef}} \\ ACCF_{W} &= 11.0 \ Ccf \end{split}$$

2019 Program Savings Document

Total:

$$ACCF = ACCF_{H} + ACCF_{W}$$
$$ACCF = 83.8^{Ccf}/_{yr} + 11.0^{Ccf}/_{yr}$$
$$ACCF = 94.8^{Ccf}/_{yr}$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Natural Gas

$$PD_{H} = ACCF_{H} \times PDF_{H}$$
$$PD_{W} = ACCF_{W} \times PDF_{W}$$

Lost Opportunity Gross Peak Demand Savings, Example

For the same example as above:

$$PD_{H} = 84.75 \times 0.00977$$

 $PD_{H} = 0.819 \ Ccf$
 $PD_{W} = 11.0 \times 0.00321$
 $PD_{W} = 0.035 \ Ccf$

Total:

$$PD = PD_{H} + PD_{W}$$
$$PD = 0.819 + 0.035$$
$$PD = 0.854 \ Ccf$$

Retrofit Gross Energy Savings, Fossil Fuel

<u>**Reminder**</u>: *Retrofit savings are the sum of Retirement savings and Lost Opportunity savings. This section presents the Retirement portion of savings.*

$$ABTU_{H} = 85,200,000 \times \left(\frac{1}{AFUE_{E}} - \frac{1}{.85}\right)$$

Savings by heating fuel:

$$ACCF_{H} = \frac{ABTU_{H}}{102,900^{Btu}/_{Cef}}$$
$$AOG_{H} = \frac{ABTU_{H}}{138,690^{Btu}/_{Gal}}$$

$$APG_{H} = \frac{ABTU_{H}}{91,330^{Btu}/_{Gal}}$$

If boiler also provides DHW:

$$ABTU_{W} = ADHW \times \left(\frac{1}{AFUE_{E}} - \frac{1}{AFUE_{B}}\right)$$
$$ABTU_{W} = 11,197,312 \times \left(\frac{1}{AFUE_{E}} - \frac{1}{0.85}\right)$$

Water heating savings by water heating fuel:

$$ACCF_{W} = \frac{ABTU_{W}}{102,900^{Btu}/_{Ccf}}$$
$$AOG_{W} = \frac{ABTU_{W}}{138,690^{Btu}/_{Gal}}$$
$$APG_{W} = \frac{ABTU_{W}}{91,330^{Btu}/_{Gal}}$$

Retrofit Gross Energy Savings, Example

An existing natural gas boiler is being replaced with high-efficiency boiler, what are the early retirement savings? The existing boiler is used to heat domestic hot water in addition to heating, but the existing boiler AFUE is unknown.

For example:

- AFUE_E = 80% or 0.80 (default value); and
- $AFUE_B = 85\%$ or 0.85 (baseline value).

<u>Reminder</u>: Retrofit savings do not depend on the efficiency of the new installed unit.

$$ABTU_{H} = 85,200,000 \times \left(\frac{1}{0.80} - \frac{1}{0.85}\right)$$
$$ABTU_{H} = 6,264,706Btu$$
$$ACCF_{H} = \frac{6,264,706Btu}{102,900^{Btu}/_{Ccf}}$$
$$ACCF_{H} = 60.88 \ Ccf$$

Water heating:

$$ABTU_{W} = 11,197,132 \times \left(\frac{1}{0.80} - \frac{1}{0.85}\right)$$

 $ABTU_{H} = 823,318.53Btu$
 $ACCF_{W} = \frac{823,318 Btu}{102,900^{Btu}/c_{ef}}$
 $ACCF_{W} = 8.00Ccf$

Total:

$$ACCF = ACCF_{H} + ACCF_{W}$$
$$ACCF = 60.8 + 8.00$$
$$ACCF = 68.8 Ccf$$

Retrofit Gross Peak Demand Savings, Example

For same example as above:

$$PD_{H} = 60.88 \times 0.00977$$

 $PD_{H} = 0.595Ccf$
 $PD_{W} = 8.0 \times 0.00321$
 $PD_{W} = 0.025 Ccf$
 $PD = PD_{H} + PD_{W}$
 $PD = 0.62 Ccf$

Changes from Last Version

Updated to reflect results of Ref [1].

References

[1] CT HVAC and Water Heating Process and impact Evaluation Report, West Hill Energy and Computing, R161/41613 R Jul. 19, 2018.

4.2.18 FURNACE

Description of Measure

Installation of a warm air or forced-air energy-efficient furnace.

Savings Methodology

The fossil fuel savings for this measure are calculated using the results from the furnace results memo (**Ref [1]**). This measure can be either Lost Opportunity or Early Retirement.

To account for the estimated remaining life of an existing furnace and the additional lost opportunity savings from a new installed unit, energy savings resulting from the removal of units in working condition are calculated as follows:

Lost Opportunity measure:

• Lost Opportunity savings are the difference in energy use between a baseline new model and the chosen high-efficiency new model, continuing for the Effective Useful Life ("EUL") from Appendix Four.

Retrofit measure:

- Uses the same methodology as a Lost Opportunity measure;
- In the case of early retirement of a working unit where the unit would have otherwise been installed until failure, lifetime "Retirement" savings are claimed additional to the lifetime "Lost Opportunity" savings (see Section 1.4); and
- Retirement savings are the difference in energy use between the older unit and a baseline new model, continuing for the Remaining Useful Life ("RUL") from Appendix Four.

In addition to the fossil fuel savings, this measure can include electric savings if the furnace is installed with an energy-efficient fan motor. For these savings, see Measure 4.2.6, Electrically Commutated Motor ("ECM").

Inputs

Table 4-MM: Inputs

Symbol	Description				
	Heating Fuel (e.g., natural gas, oil, and propane)				
AFUEE	AFUE, Existing (if available)	%			
AFUEI	AFUE, Installed	%			

Nomenclature

Table 4-NN: Nomenclature

Symbol	Description	Units	Values	Comments
ABTU _H	Annual Btu Savings – Heating	Btu		
ACCF _H	Annual Natural Gas Savings – Heating	ccf		
AFUEB	AFUE of Baseline Furnace		85% for Natural Gas or	Ref [1]
			Propane	
			82% for Oil	
AFUE _E	AFUE of Existing Furnace		Actual rated	Ref [2],Table
			Natural Gas or Propane 78%	4
			if unknown	
			Oil 76% if unknown	
AOG _H	Annual Oil Savings – Heating	Gallons		
APG_{H}	Annual Propane Savings – Heating	Gallons		
EUL	Effective Useful Life			Appendix
				Four
HF	Average Heating Factor Based on Home's	Btu/year	75,100,000	Ref [1]
	Heat Load			
PD _H	Natural Gas Peak Day Savings – Heating	ccf		
PDF _H	Natural Gas Peak Day Factor – Heating		0.00977	Appendix
				Two
RUL	Remaining Useful Life			Appendix
				Four

Lost Opportunity Gross Energy Savings, Fossil Fuel

$$ABTU_{H} = 77,500,000 \times \left(\frac{1}{.85} - \frac{1}{AFUE_{I}}\right)$$

Savings by heating fuel:

$$ACCF_{H} = \frac{ABTU_{H}}{102,900^{Btu}/_{Cef}}$$
$$AOG_{H} = \frac{ABTU_{H}}{138,690^{Btu}/_{Gal}}$$
$$APG_{H} = \frac{ABTU_{H}}{91,330^{Btu}/_{Gal}}$$

Lost Opportunity Gross Energy Savings, Example

A new natural gas furnace with an AFUE of 96% is installed. What are the annual fossil fuel savings? Constant values include:

- AFUE_I= 96% or 0.96; and
- AFUE_B= 85% or 0.85 (baseline value).

$$ABTU_{H} = 77,500,000 \times \left(\frac{1}{0.85} - \frac{1}{0.96}\right)$$
$$ABTU_{H} = 10,447,305$$
$$ACCF_{H} = \frac{10,447,3015}{102,900 Btu/Ccf}$$
$$ACCF_{H} = 101.5 Ccf$$

Lost Opportunity Gross Peak Day Savings, Natural Gas

$$PD_{H} = ACCF_{H} \times PDF_{H}$$

Lost Opportunity Gross Peak Demand Savings, Example

A new natural gas furnace with an AFUE of 95% is installed. What are the peak day natural gas savings?

$$PD_{H} = 101.5 \times 0.00977$$

 $PD_{H} = 0..992 \ Ccf$

Retrofit Gross Energy Savings, Fossil Fuel

<u>Reminder</u>: Retrofit savings are the sum of Retirement savings and Lost Opportunity savings. This section presents the Retirement portion of savings.

$$ABTU_{H} = 77,500,000 \times \left(\frac{1}{AFUE_{E}} - \frac{1}{AFUE_{B}}\right)$$
$$ABTU_{H} = 77,500,000 \times \left(\frac{1}{AFUE_{E}} - \frac{1}{0.85}\right)$$

Savings by heating fuel:

$$ACCF_{H} = \frac{ABTU_{H}}{102,900 \, {}^{Btu}/_{Ccf}}$$
$$AOG_{H} = \frac{ABTU_{H}}{138,690 \, {}^{Btu}/_{Gal}}$$
$$APG_{H} = \frac{ABTU_{H}}{91,330 \, {}^{Btu}/_{Gal}}$$

<u>Reminder</u>: For electric savings for energy efficient fan motors, see measure 4.2.6 (ECM).

Retrofit Gross Energy Savings, Example

An existing natural gas furnace with unknown AFUE. What are the annual retirement fossil fuel savings for the replacement of this furnace?

Reminder: Retrofit savings do not depend on the efficiency of the new installed unit.

- AFUE_E= 78% or 0.78 (default value); and
- AFUE_B= 85% or 0.85 (baseline value).

$$ABTU_{H} = 77,500,000 \times \left(\frac{1}{0.78} - \frac{1}{0.85}\right)$$
$$ABTU_{H} = 8,182,504 Btu$$
$$ACCF_{H} = \frac{8,182,504 Btu}{102,900 Btu} / Ccf$$
$$ACCF_{H} = 79.5 Ccf$$

Retrofit Gross Peak Day Savings, Natural Gas

$$PD_{H} = ACCF_{H} \times PDF_{H}$$

Retrofit Gross Peak Demand Savings, Example

An existing natural gas furnace was installed in 1985. What are the retirement peak day natural gas savings?

$$PD_{H} = 79.5 \times 0.00977$$

 $PD_{H} = 0.78 \ Ccf$

Changes from Last Version

Updated to reflect results of Ref [1].

References

- [1] CT HVAC and Water Heating Process and impact Evaluation Report, West Hill Energy and Computing, R1641613 Review Draft May 16,2018. (we need a new date for the finalized report when it is sent out.)
- [2] Cadmus Group, "High Efficiency Heating Equipment Impact Evaluation Final Report," Mar. 2015, Massachusetts.

4.2.19 BOILER RESET CONTROLS

Description of Measure

Retrofit installation of control to automatically reset boiler water temperature based on outdoor or return water temperature. The measure is assumed to be applied to existing non-condensing boiler systems.

Savings Methodology

Savings is based on Home Energy Services Impact Evaluation by the Cadmus Group for the Gas and electric Program Administrators of Massachusetts (**Ref [1]**).

Inputs

Table 4-00: Inputs

Symbol	Description
	Number of Gas Fired Boilers

Nomenclature

Table 4-PP: Nomenclature

Symbol	Description	Units	Values	Comments
ACCF _H Annual Natural Gas Savings Heating		ccf/yr	45	Ref [1]
PDF _H	PDF _H Natural Gas Peak Day Factor		.00977	Appendix One
PD _H	Natural Gas Peak Day Savings - Heating	ccf/yr	0.439	Ref [1]

Retrofit Gross Annual Savings, Fossil Fuel

• 45 ccf per year.

Retrofit Gross Peak Day Savings, Natural Gas

• 0.439 ccf per boiler control.

Non-Energy Benefits

Not applicable.

Changes from Last Version

No changes.

References

[1] The Cadmus Group, Inc. (2012) Home Energy Services Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts.

4.2.20 ECM CIRCULATING PUMP

Description of Measure

Retrofit installation of an Electronically Commutated Motor ("ECM") circulating pump to replace an existing circulating pump on a residential hydronic heating system.

Savings Methodology

Savings is based on Impact Evaluation of Residential HVAC and Hot Water Program, Impact and Process Evaluation and Residential Heat Pump Water Heater Impact Evaluation (**Ref [1]**).

Inputs

Table 4-QQ: Inputs

Symbol	Description		
	Number of ECM Circulator Pumps		

Nomenclature

Table 4-RR: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH	Annual Electric Energy Savings	kWh/yr	68	Ref [1]
SKW	Seasonal Summer Peak Savings	kW	0	
WKW	Seasonal Winter Peak Savings	kW	0.024	Ref [1]
CF _H	Seasonal Winter Peak Coincidence Factor		1.0	Appendix One

Retrofit Gross Annual Savings, Electric

68 kWh per year.

Retrofit Gross Seasonal Peak Demand Savings, Electric

Cooling:

 $SKW_C = 0$

Heating:

Changes from Last Version

Updated by new HVAC study final draft.

References

[1] R1614/R1613 CT HVAC and Water Heater Process and Impact Evaluation , West Hill Energy and Computing, EMI Consulting & Lexicon Energy Consulting, Jul. 19, 2018. p. 86.

4.2.21 WI-FI THERMOSTAT

Description of Measure

This measure is the replacement of an existing residential thermostat with a Wi-Fi enabled thermostat.

Savings Methodology

The savings from this measure are based on the savings differential from the baseline thermostat to the new a Wi-Fi enabled thermostat. The savings are per home.

Table 4-SS: Assumed Baselines

	Baseline	Comments
HES	Manual	
HES-IE	Manual	

Inputs

Table 4-TT: Inputs

Symbol	Description	Units
	No. of Units Installed	

Nomenclature

Table 4-UU: Nomenclature

Symbol	Description	Units	Comments
AKWH _C	Annual Gross Electric Energy Savings - Cooling	kWh/yr	Ref [1], Ref [2]
AKWH _H	Annual Gross Electric Energy Savings - Heating	kWh/yr	
AKWH _{H-ER}	Annual Gross Electric Energy Savings - Heating (electric	kWh/yr	
	resistance)		
AKWH _{H-HP}	Annual Gross Electric Energy Savings - Heating (heat pump)	kWh/yr	
AKWH _{H-GHP}	Annual Gross Electric Energy Savings – Heating (ground	kWh/yr	
	source heat pump)		
ACCF _H	Annual Gross Natural Gas Energy Savings - Heating	ccf/yr	Ref [1]
AGO _H	Annual Gross Oil Energy Savings - Heating	Gal/yr	
AGP _H	Annual Gross Propane Energy Savings - Heating	Gal/yr	
SKW	Summer Demand Savings - Cooling	kW	Note [4]
WKW	Winter Demand Savings	kW	Note [4]

Gross Energy Savings, Electric

Table 4-VV: Gross Energy Savings, Electric (single-family)

	AKWH _c	AKWH _H	AKWH _{H-ER}	AKWH _{H-HP}	AKWH _{H-GHP}	Comments
HES	104.0		637.5	318.7	212.5	Ref [1]
HES-Income Eligible	104.0		637.5	318.7	212.5	Ref [1]

Gross Seasonal Peak Demand Savings, Electric (winter and summer)

None (see Note [4]).

Gross Energy Savings, Fossil Fuels

Table 4-WW: Gross Energy Savings, Fossil Fuels (single-family)

	ACCF _H	AGO _H	AGP _H	Comments
HES	84.5	66.7	95.3	Ref [1]
HES-IE	84.5	66.7	95.3	Ref [1]

Gross Peak Day Savings, Natural Gas

$$PD_{H} = ACCF_{H} \times PDF_{H}$$
 =84.5X0.00977=0.825 Ccf

For multifamily units, the energy savings are lower compared to single-family homes (single-family energy savings are shown in Tables 4-VV and 4-WW above). To obtain the savings for multifamily units, the values from the above tables are multiplied by a 0.50 factor to account for the fact that multifamily units tend to be smaller in size and have fewer exposed walls to the exterior compared to single-family homes.

Changes from Last Version

No changes.

References

- The Cadmus Group, Inc. "Wi-Fi Programmable Thermostat Pilot Program Evaluation Part of the Massachusetts 2011 Residential Retrofit and Low Income Program Area Evaluation," Sep. 2012.
- [2] The Cadmus Group, Inc. "Wi-Fi Programmable Thermostat Pilot Program Evaluation Part of the Massachusetts 2011 Residential Retrofit and Low-Income Program Area Evaluation," Sep. 2012. Per p. 18, paragraph 3, it states that there is no difference in electric savings between sites with a programmable thermostat baseline and sites with a manual thermostat baseline.

Notes

- [1] Savings is based on thermostat alone with no behavioral component (messages, demand response, etc.).
- [2] Direct install is based on site verification that the customer has an in-home Wi-Fi network.
- [3] Assumes a 15-year measure life.
- [4] CT is not claiming any kW Demand reductions at this time and will revisit this after the evaluation of any Connecticut-specific Wi-Fi Thermostat program.

4.2.22 CLEAN TUNE AND TEST

Description of Measure

Clean test and tune performed on boilers or furnaces by cleaning and adjusting burner, and cleaning heat exchanger.

Savings Methodology

The fossil fuel savings for this measure are based on equipment tune-ups by adjusting the burner and cleaning the heat exchanger; therefore, the efficiency improves.

Inputs

Table 4-XX: Gross Energy Savings, Fossil Fuels

Symbol	Description	Units
	Heating Fuel (e.g., natural gas, oil, and propane)	

Nomenclature

Symbol	Description	Units	Values	Comments
А	Heated Area Served by Boiler or Furnace	ft ²	2000	Note [1]
ABTU _H	Annual Btu Savings - Heating	Btu/yr		
ACCF	Annual Natural Gas Savings	ccf/yr		
ACCF _H	Annual Natural Gas Savings - Heating	ccf/yr		
AFUE	Annual Fuel Utilization Efficiency, Existing	%	80%	Note [3]
HF	Average Heating Factor Based on Home's Heat	Btu/ ft ²	46,400	Note [2]
	Load			
PD	Natural Gas Peak Day Savings	ccf/yr		
РD _н	Natural Gas Peak Day Savings – Heating	ccf/yr		
PDw	Natural Gas Peak Day savings – Water Heating	ccf/yr		
PDF_H	Natural Gas Peak Day Factor – Heating		0.00977	Appendix One
PDFw	Natural Gas Peak Day Factor – Water Heating		0.00321	Appendix One
ESF	Energy Savings Factor		0.02	Ref [1]

Table 4-YY: Gross Energy Savings, Fossil Fuels

Gross Energy Savings, Fossil Fuel

$$ABTU_{H} = A \times HF \times (\frac{1}{AFUE_{E}}) \times ESF$$
$$ABTU_{H} = 2,000 \times 46,400 \times \left(\frac{1}{.80}\right) \times 0.02 = 2,320,000 Btu$$

Savings by heating fuel:

$$ACCF_{H} = \frac{2,320,000}{102,900} = 22.5 \ CCF$$
$$AOG_{H} = \frac{2,320,000}{138,690} = 16.7 \ Gal$$
$$APG_{H} = \frac{2,320,000}{91,330} = 25.4 \ Gal$$

Peak Day Savings, Natural Gas

$$PD_{H} = ACCF_{H} \times PDF_{H}$$
$$PD_{H} = 22.5CCF \times 0.00977 = 0.219Ccf$$

Changes from Last Version

- "Area (A) served by boiler or furnace'; and
- Measure life in Appendix Four.

References

- [1] ESF 2% value was used compared to 5% used in the New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Residential, Multi-Family, and Commercial/Industrial Measures, Version 3, Issue Date – Jun. 1, 2015, p. 98.
- [2] Cadmus Group, "High Efficiency Heating Equipment Impact Evaluation Final Report", Mar. 2015. Massachusetts.

Notes

[1] Default value selected based on recent data from **Ref** [2]. This evaluation reported an average size of 2,000 sq. ft. for homes with boilers in Massachusetts.

- [2] Default value selected based on recent data from **Ref** [2]. This evaluation reported increased heating loads for homes with boilers in Massachusetts, and the previous default assumption of 38,700 Btu/ft² has correspondingly been increased by 20%.
- [3] The value of 80% is based on verified data from **Ref** [2], Table 4, and should be used except in situations where either actual nameplate ratings or actual efficiency test data are available.

4.3.7 RESIDENTIAL APPLIANCES

Description of Measure

Installation of qualified appliances.

Savings Methodology

Energy savings for this Lost Opportunity measure are deemed. In the case of a retrofit, the savings calculator for ENERGY STAR-qualified appliances is located on the ENERGY STAR website (**Ref [1]**) and can be modified using the instructions in the Retrofit portion of the measure. Note that the input and equipment tabs within the spreadsheet have default values that can be overridden by the user when project specific details are available. The peak electric and gas demand savings are calculated as specified below.

Inputs

Table 4-CCC: Inputs

Symbol	Description	Units
	No. of Units Purchased	

Nomenclature

Table 4-DDD: Nomenclature

Symbol	Description	Units	Values	Comments
ACCFo	Annual Natural Gas Savings	ccf		
AKWH	Annual Gross Electric Energy Savings	kilowatt-		
		hours, kWh		
SKW	Average Summer Demand Savings	kW		
WKW	Average Winter Demand Savings	kW		
PDo	Peak day Gas Savings	ccf		
EUL	Effective Useful Life: Measure Life of Installed	years	Appendix	
	Unit		Four	
RUL	Remaining Useful Life: Remaining Number of	years	Appendix	RUL
	Years the Existing Unit Would Have Operated		Four	
	Until Failure			

	AKWH	SKW	WKW	Oil (Gal)	Propane (Gal)	Natural Gas (ccf)	Water (Gal)	Comments
Air Cleaner/Purifier	227	0.026	0.026					Ref [1]
Clothes Washer Tier I	84	0.010	0.010	1.25	0.12	1.09	1,150	Note [1], Note [3]
Clothes Washer Tier II	148	0.019	0.019	2.03	0.20	1.79	2,031	Note [1] <i>,</i> Note [3]
Clothes Dryer (ENERGY STAR)	93	0.012	0.012					Ref [2]
Clothes Dryer (Hybrid)	229	0.029	0.029					Ref [2]
Clothes Dryer (Heat Pump)	472	0.059	0.059					Ref [2]
Dehumidifier	214	0.066	0.000					Ref [4]
Dishwasher	14	0.002	0.002	0.193	0.196	0.013	108	Ref [5], Note [1]
Refrigerator Tier I (10% greater than ENERGY STAR)	64	0.012	0.007					Ref [2]
Refrigerator Tier II (15% greater than ENERGY STAR)	96	0.018	0.010					Ref [2]
Room Air Conditioner	77.5	0.029	0.000					Ref[5], Note [4]
Freezer	45	0.008	0.005					Note [2]

Table 4-EEE: Savings

Retrofit Gross Energy Savings

- **1.** Calculate Lost Opportunity Savings using table $1 (AKWH_{Lost Opp})$.
- 2. Modify the Energy Star Appliance Spreadsheet calculations Ref[4] to take into account existing equipment by going to the spreadsheet labeled after the appliance, and replacing all the conventional model specifications (highlighted in blue) with the existing equipment specifications.
- 3. The retirement portion of the retrofit ($AKWH_{retire}$) savings will be visible on the RESULTS sheet. For lifetime savings...

$LKWH_{retrofit} = AKWH_{retire} \times RUL + AKWH_{LostOpp} \times EUL$

Changes from Last Version

Added Room Air Conditioner savings.

References

- [1] EPA Next Gen Product Analysis_10.9.14.xlsx. Last Accessed on Jul. 1, 2015.
- [2] Efficiency Vermont Technical Reference Manual, Last Accessed on Aug. 30, 2017.
- [4] Savings Calculator for ENERGY STAR Appliances, Available at: <u>https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx</u>, Last Accessed Jun. 21, 2017.
- [5] Savings Calculator of Energy Star Window AC, Available at: <u>https://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorRoomAC.xls</u> Accessed Jun. 8, 2018.

Notes

[1] When the hot water and dryer fuels are both unknown, the following fuel mix is estimated typical for Connecticut. Savings are claimed for all fuel types according to the following percentages; this weighting has been done by multiplying every individual Lost Opportunity component of every fuel by its respective percentage and only the resultant equations have been listed in the body of the measure:

Table 4-FFF: Nomenclature

Water Heater Fuel				Clo	Clothes Dryer Heating Fuel		
Electric	Gas	Oil	Propane	Electric	Gas	Propane	
30%	27%	41%	2%	93%	5%	2%	

- [2] CT Utility Data. Savings Calculated using Equations from Ref [4].
- [3] Eversource analysis of Ref [2].
- [4] Average of CT and Bridgeport kwh saving values from Ref[5]. Skw calculated using Ref[5] and Room A/C Coincidence Factor from Appendix One.

4.3.14 ELECTRONICS

Description of Measure

Purchase of a new ENERGY STAR-qualified electronics equipment. Electronics equipment includes:

- Blu-Ray Player;
- Computer Monitor (Displays);
- Cordless Phones;
- Desktop Computers;
- DVD Player;
- Home Theatre in a Box Systems;
- Laptop Computers;
- Room Air Cleaners;
- Set-top Boxes & Cable Boxes;
- Sound Bars;
- Televisions; and
- Advanced Power Strips.

Savings Methodology

The savings estimates in the Table 4-III are for ENERGY STAR-qualified electronics equipment versus conventional equipment (**Ref [1]** and **Ref [2]**).

Note: No demand savings have been identified for this measure.

Inputs

Table 4-GGG: Inputs

Symbol	Description	Units
	No. of Units Purchased	

Nomenclature

Table 4-HHH: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH	Annual Electric Energy Savings	kWh		Table 4-III
SKW	Summer Demand Savings	kW	0	
WKW	Winter Demand Savings	kW	0	

Lost Opportunity Gross Energy Savings, Electric

The savings estimates in the following table are for ENERGY STAR-qualified electronics equipment versus conventional equipment.

Electronics Equipment	Energy Savings AKWH	Comments
Blu-Ray Player	4	ENERGY STAR calculator given in Ref [1] to find Energy Savings
Computer Monitor (displays)	8	ENERGY STAR calculator given in Ref [2] to find Energy Savings
Cordless Phones	4	ENERGY STAR calculator given in Ref [1] to find Energy Savings
Desktop Computers	161	ENERGY STAR calculator given in Ref [2] to find Energy Savings
DVD Player	6	ENERGY STAR calculator given in Ref [1] to find Energy Savings
Laptop Computers	52	ENERGY STAR calculator given in Ref [2] to find Energy Savings
Televisions	30	ENERGY STAR calculator given in Ref [1] to find Energy Savings
Set-Top Boxes	69	Ref [3]
Sound Bars	45	Ref [4]
Advanced Power Strips	48	Ref [5]

Table 4-III: ENERGY STAR Electronics Annual Savings

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

- WKW = 0;
- SKW = 0; and
- No demand savings are claimed for this measure.

Changes from Last Version

No Changes

References

- [1] Savings Estimate for ENERGY STAR Qualified Consumer Electronics, ENERGY STAR Consumer Electronics Calculator, ENERGY STAR. Last accessed: Jul. 19, 2017. Available at: https://www.energystar.gov/sites/default/files/asset/document/Consumer Electronics Calculator.xlsx.
- [2] Savings Estimate for ENERGY STAR Qualified Office Equipment, ENERGY STAR Office Equipment Savings Calculator, ENERGY STAR. Last accessed on: Jul. 19, 2017. <u>https://www.energystar.gov/sites/default/files/asset/document/Office%20Equipment%20Calculator.xlsx.</u>
- [3] Set Top Box Savings .xslx. Last Accessed on Jul. 26, 2017.

- [4] Last accessed on: Jul. 26, 2017. Available at: <u>https://static1.squarespace.com/static/53c96e16e4b003bdba4f4fee/t/556d387fe4b0d8dc09b24c28/143</u> <u>3221247215/RPP+Methodology+for+Developing+UEC+Estimates_Final.pdf</u>, (Sound bar Section).
- [5] Advanced Power Strips College Dorm Room Savings Verification Study Final Report prepared for Eversource Connecticut. Jun. 23, 2016. p. 2.

4.4 ENVELOPE

4.4.1 REM SAVINGS

Description of Measure

Residential Energy Modeling ("REM") Savings for ENERGY STAR-certified residential new construction.

Savings Methodology

An ENERGY STAR Home must be certified through the Home Energy Rating System ("HERS"). ENERGY STAR Homes are limited to single-family homes or multi-family homes that are five stories or less. Highrise units do not qualify for ENERGY STAR certification and the savings methodology below does not apply to those units.

The traditional method of qualifying ENERGY STAR Homes is through a HERS rating. The rating involves inputting the key energy features into a computer program (e.g., geometry, orientation, thermal performance, mechanical systems, etc.) that will generate a HERS score and other useful information regarding the energy usage of the home. REM/Rate[™] ("REM") is the software that is used in Connecticut (and in most jurisdictions) to generate HERS ratings (Note [1]).

A feature of REM is that it enables the user to define a base home ("user defined reference home" or "UDRH") and calculate the savings of an actual home relative to the UDRH. UDRH is the same size as the "as-built," and utilizes the same type of mechanical systems and fuels. However, the lighting, thermal and mechanical efficiencies of the UDRH are set to baseline levels (Note [2]). Current UDRH values are based on the 2017 RNC study (Ref [1]).

Inputs

Table 4-JJJ: Inputs

Symbol	Description
REM	REM Simulation File Submitted by an HERS Rater

Lost Opportunity Gross Energy Savings, Electric

The UDRH report generates heating, cooling, lighting and water heating consumption for the "as-built" home and the defined "base" home (i.e., Table 4-KKK). The difference between those values is the energy savings. This savings is referred to as "REM" savings.

	UDRH Consumption (MMBtu)	As-Built Consumption (MMBtu)	Energy Savings (MMBtu)
Heating	40.5	34.8	5.7
Cooling	4.5	2.3	2.2
Water Heating	20.6	17.5	3.1
Lighting	5.0	4.0	1.0

Table 4-KKK: Example of a Typical UDRH Report

The REM savings above includes the effect of installing a programmable thermostat, so additional savings should not be claimed if one (or more) programmable thermostat(s) is installed. Also, REM has the ability to incorporate lights and appliances into an "expanded" rating. Connecticut does NOT use the expanded rating. Therefore, the REM savings does not include savings for appliances. These savings (if any) are calculated separately.

Since REM savings is based on a whole building approach (i.e., it includes the effects of upgraded insulation, tighter ducts, increased efficiencies, etc.), this savings methodology takes precedence over "code-plus" measures. Savings for homes that have a REM analysis done should be calculated using the UDRH Report; and no additional savings should be claimed based on code-plus measures. The savings are based on an "average" home built in Connecticut as determined by a baseline evaluation and used as a baseline home UDRH (**Ref [1**]).

<u>Note</u>: The baseline may differ from a home built to minimum prescriptive code. While many homes fail to meet some aspects of the energy code, their performance overall exceeds minimum code performance substantially and therefore, the baseline exceeds minimum code performance as well.

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

Described above in Lost Opportunity Gross Energy Savings – Electric.

Lost Opportunity Gross Peak Day Savings, Natural Gas

Described above in Lost Opportunity Gross Energy Savings – Gas.

Non-Energy Benefits

Improves personal comfort and health. It also increases a home's durability and value.

Changes from Last Version

Added lighting savings.

References

1. R1602 Residential New Construction Program Baseline Study, Dec. 5, 2017, NMR Group, Inc.

Notes

- [1] REM/Rate[™] is a residential energy analysis, code compliance and rating software developed by Architectural Energy Corporation. This software calculates heating, cooling, hot water, lighting, and appliance energy loads, consumption/costs for new/existing single and multi-family homes.
- [2] The UDRH is based on data collected through evaluations, and baseline levels are prescriptive code values or those established from the most recent baseline studies available and program administrator field experience.

4.4.4 Infiltration Reduction Testing (Blower Door Test)

Description of Measure

Blower Door Test equipment is used to verify infiltration reduction.

Savings Methodology

REM/Rate (**Ref [1]**), a residential energy analysis, code compliance and rating software, was used to simulate energy use in a typical home before and after infiltration reduction (CFM air leakage at 50 Pascals pressure difference). The average energy savings in MMBtu and kWh were estimated from the results of the REM/Rate simulations, then converted to the appropriate fuels using unit conversions and assumed distribution losses. The demand savings were also based on the REM simulation.

This methodology is used to estimate infiltration savings only when savings are a result of sealing surfaces that provide direct separation between conditioned and non-conditioned spaces. For multi-family units (defined as more than 4 units) that share common boundaries or connecting hallways, either a guarded blower door test should be performed by pressurizing all adjacent units to isolate the leakage to the outside, or the leakage of the entire structure should be measured using a single test. If an unguarded test of a unit is performed (i.e., individual units or sections of a building are tested) that result should be corrected using the adjustment equation below. This equation adjusts for inter-unit leakage through shared surfaces. For all blower door testing, savings may be subject to a final analysis which may include a billing analysis, calibration, engineering models, or other applicable methods.

<u>Note</u>: These savings are based on envelope reductions only and should not be applied to duct sealing reductions which are addressed as a separate measure (Measure 4.2.9).

Symbol	Description
CFM_{Pre}	Infiltration Before Air Sealing @ 50 Pa
CFM_{Post}	Infiltration After Air Sealing @ 50 Pa
	Heating Fuel Type (e.g., electric resistive, heat pump, natural gas, oil, propane, etc.)
	Heating System Distribution Type (e.g., forced air with fan, heat pump, resistive, radiator,
	etc.)

Inputs

Table 4-LLL: Inputs

Nomenclature

Table 4-MMM: Nomenclature

Symbol	Description	Units	Value	Comments
ACCF _H	Annual Natural Gas Savings, Heating	ccf		
$AKWH_{H}$	Annual Electric Energy Savings, Heating	kWh		
AKWH _C	Annual Electric Energy Savings, Cooling	kWh		
AOG _H	Annual Oil Savings, Heating	Gal		
APG _H	Annual Propane Savings, Heating	Gal		
CFM _{Pre}	Infiltration Before Air Sealing Measured with the	CFM		Inputs
	House Being Negatively Pressurized to 50 Pa			
	Relative to Outdoor Conditions			
CFM _{Post}	Infiltration After Air Sealing Measured with the	CFM		Inputs
	House Being Negatively Pressurized to 50 Pa			
	Relative to Outdoor Conditions			
PD _H	Natural Gas Peak Day Savings, Heating	ccf		
PDFн	Natural Gas Peak Day Factor, Heating		0.00977	Appendix
				One
REM	Savings Factor in Energy Units per CFM Reduction			
	Based on REM/Rate Simulation			
SKW	Summer Demand Savings	kW		
WKW	Winter Demand Savings	kW		
BF	Blower Door CFM Reduction Factor		1	SF
			Calculated	MF

Retrofit Gross Energy Savings, Electric

Table 4-NNN: Retrofit Electric Savings per CFM Reduction (at 50 Pa)

Measure		Energy Savings	Units
Electric Resistance Heat	$REM_{Heating}$	2.638	kWh
Heat Pump Heating	$REM_{Heating}$	1.319	kWh
Geothermal Heating	$REM_{Heating}$	0.879	kWh
Air Handler Heating (fan)	REMAH	0.06	kWh
Cooling (central A/C only)	$REM_{Cooling}$	0.0593	kWh
Cooling (room A/C: window, sleeve, or PTAC) (Note [1])	$REM_{Cooling}$	0.0168	kWh

For electric resistive, heat pump, or geothermal heating systems:

 $AKWH_{H} = REM_{Heating} \times (CFM_{Pre} - CFM_{Post}) \times BF$

For Fossil Fuel heating with air handler unit:

$$AKWH_{H} = REM_{AH} \times (CFM_{Pre} - CFM_{Post}) \times BF$$

For homes with cooling:

$$AKWH_{C} = REM_{Cooling} \times (CFM_{Pre} - CFM_{Post}) \times BF$$

Retrofit Gross Energy Savings, Fossil Fuel

Measure		Energy Savings	Units
Fossil Fuel Heating		0.012	MMBtu
Natural Gas	REM_{NG}	0.117	ccf
Propane	$REM_{Propane}$	0.131	Gal
Oil	REM _{Oil}	0.087	Gal

For homes with natural gas heating system:

$$ACCF_{H} = REM_{NG} \times (CFM_{Pre} - CFM_{Post}) \times BF$$

For homes with oil heating system:

$$AOG_{H} = REM_{Oil} \times (CFM_{Pre} - CFM_{Post}) \times BF$$

For homes with propane heating system:

$$APG_{H} = REM_{Propane} \times (CFM_{Pre} - CFM_{Post}) \times BF$$

Retrofit Gross Energy Savings, Example

A blower door test is performed in a 2400 ft², 1940's Cape Cod style home in Hartford, Conn. The home is heated primarily by an oil boiler and cooled by Room A/C. Blower door test equipment is used to measure the infiltration of the home at 50 Pa. The readings on the test equipment show CFM_{Pre} of 1850 and CFM_{Post} of 1575. What are the electric and fossil fuel savings for this home?

Oil heating savings may be calculated using the following equation:

$$AOG_{H} = REM_{Oil} \times (CFM_{Pre} - CFM_{Post}) \times BF$$
$$AOG_{H} = 0.087 \times (1850 - 1575) \times 1 = 23.9 \text{ Gal-Oil}/\text{yr}$$

Cooling savings may also be claimed as follows:

$$AKWH_{C} = REM_{Cooling} \times (CFM_{Pre} - CFM_{Post}) \times BF$$
$$AKWH_{C} = 0.0168 \times (1850 - 1575) \times 1 = 4.62^{kWh}/_{yr}$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

Electric Resistance and Heat Pump	Geothermal - Retrofit	Central A/C and HP	Room A/C (Note [2])
REM _{WKW}	REM _{WKW}	REM _{SKW}	REM _{skw}
0.00117	0.00039	0.00009	0.00002

Table 4-PPP: Demand Savings, kW per CFM Reduction

 $WKW_{H} = REM_{WKW} \times (CFM_{Pre} - CFM_{Post}) \times BF$

 $SKW_C = REM_{SKW} \times (CFM_{Pre} - CFM_{Post}) \times BF$

Reminder: Demand savings are based on design load calculation in REM software hence there is no need to use coincidence factors.

Retrofit Gross Peak Day Savings, Natural Gas

For homes with natural gas heating system:

 $PD_H = ACCF_H \times PDF_H$

Retrofit Gross Peak Demand Savings, Example

For the above Retrofit example, what is the summer demand savings for this home?

$$SKW_{C} = REM_{SKW} \times (CFM_{Pre} - CFM_{Post}) \times BF$$

 $SKW_{C} = 0.00002 \times (1850 - 1575) \times 1 = 0.0055 \text{ kW}$

Changes from Last Version

No changes.

References

REM/Rate[™] is a residential energy analysis, code compliance and rating software developed by Architectural Energy Corporation. This software calculates heating, cooling, hot water, lighting, and appliance energy loads, consumption and costs for new and existing single and multi-family homes. Blower Door energy savings analysis using REM/Rate[™] was performed by C&LM Planning team, Eversource, Aug. 2008.

- [1] Nexant Market Research, Inc., "Market Assessment for ENERGY STAR Room Air Conditioners in Connecticut," Cambridge, MA, 2007, pp. 17-18.
- [2] RLW Analytics, "Final Report: Coincidence Factor Study: Residential Room Air Conditioners," Middletown, CT, 2008, pp. iv, 22.
- [3] ADM Associates, Inc., "Residential Central A/C Regional Evaluation," Sacramento, CA, 2009, pp. 4-4.
- [4] Technical Report: Multifamily Envelope Leakage Model O. Faakye & D. Griffiths Consortium for Advanced Residential Buildings Feb. 2014.
- [5] Estimating Energy Savings for Multifamily Air Sealing Measures. Steven Winter Associates INC. Jul. 26, 2017.

Notes

[1] Ref [5] updated with results from Ref [6] were used:

[2]

Calculated blower door CFM reduction = $BF \times Measured CFM$ (Unguarded Blower Door Test)

$$BF = 0.7818 - .0002 \times D + 0.0012 \times F$$

Where:

- **D** = Shared Surface Area (ft²) between conditioned spaces.
- **F** = Envelope Perimeter (ft) is used to describe the sum of all the lengths of the edges of the unit, common and exterior surfaces.
- [3] Room A/C cooling savings are derived from factors found in Ref [2], Ref [3], and Ref [4].

4.4.8 WINDOW REPLACEMENT

Description of Measure

Installation of an ENERGY STAR window to replace an existing single pane window that is between the conditioned space and the outdoors.

Savings Methodology

The measure's savings are calculated using the installed area of the replacement window and usage factors develop using RESFEN (**Ref [1]**) to model different window types and heating fuels. The results of this analysis are shown in tables 1 & 2. The energy savings are calculated by subtracting the heating fuel specific ENERGY STAR values from those for single pane "tight" value and multiplying by the window area. For homes that have central cooling, the same analysis is done using the cooling energy usage.

Note: Savings may not be claimed if the window is located in an unconditioned space such as an unheated porch, basement, or hallway.

Inputs

Symbol	Description	Units
	Cooling System Type of Home	
	Heating Fuel of Home/Heating System Type	
D _H	Height of the Window	Inches
Dw	Width of the Window	Inches
U	Rated U Value of Window (not required for savings calculation)	Btu/ft ² x h x ⁰ F

Table 4-QQQ: Demand Savings, kW per CFM Reduction

Nomenclature

Table 4-RRR: Demand Savings, kW per CFM Reduction

Symbol	Description	Units	Values	Comments
A	Area of the Window	ft ²		
ACCF _H	Annual Gas Savings - Heating	ccf/yr		
AEC	Annual Electric Cooling Usage	kWh/ft²/yr	Table 4-SSS	Note [2]
AEH	Annual Electric Heating Usage	kWh/ft²/yr	Table 4-SS	Note [2]
AGU	Annual Natural Gas Usage	ccf/ ft²/yr	Table 4-TT	Note [2]
AKWH _C	Annual Electric Energy Savings - Cooling	kWh/yr		
AKWH _H	Annual Electric Energy Savings - Heating	kWh/yr		
AOG _H	Annual Oil Savings - Heating	gal/yr		
AOU	Annual Oil Usage	gal/ft²/yr	Table 4-TTT	Note [2]
APG _H	Annual Propane Savings - Heating	gallons/yr		
APU	Annual Propane Usage	gal/ft²/yr	Table 4-TTT	Note [2]
CFs	Summer Seasonal Peak Coincidence Factor		0.59	Appendix One
D _H	Height of the Window	inch		
Dw	Width of the Window	inch		
PFw	Winter Peak Factor	W/kWh	0.570	Ref [2]
WKW	Winter Coincident Peak Demand Savings	kW		
SKW	Summer Coincident Peak Demand Savings	kW		
PDF _H	Peak Day Factor - Heating		0.00977	Appendix One
PD _H	Peak Day Savings - Heating			
b	Baseline			
···es	ENERGY STAR			Ref [6]
HP	Heat Pump Heating Only			
•••R	Electric Resistance Heating Only			
····RAC	Room Air Conditioners (Cooling Only)			Note [3]

Retrofit Gross Energy Savings, Electric

Table 4-SSS: Annual Electric Energy Usage (Note [2])

Window Type	AEH (kWh/ft²)	AEC (kWh/ft²)
Single Pane ("leaky")	28.61	2.65
Single Pane ("tight") (baseline)	22.02	2.57
Double Pane (or single with storm)	10.79	2.57
ENERGY STAR - Double Pane	5.57	1.49
ENERGY STAR – Triple Pane	3.64	1.35

Savings by heating fuel:

$$A = \frac{D_H \times D_W}{144 \, \frac{in^2}{ft^2}}$$

Heating (Electric Resistance Heating and Heat Pump, Note [1]):

$$AKWH_{H,R} = (AEH_b - AEH_{es}) \times A$$
$$AKWH_{H,HP} = \frac{(AEH_b - AEH_{es})}{2} \times A$$

Example, for going from a baseline to an ENERGY STAR window:

$$AKWH_{H,R} = (22.02 - 5.57) \times A$$

 $AKWH_{H,R} = 16.36 \times A$
 $AKWH_{H,HP} = \frac{(22.02 - 5.57)}{2} \times A$
 $AKWH_{H,HP} = 8.23 \times A$

Cooling (CAC Only):

$$AKWH_{C,CAC} = (AEH_b - AEH_{es}) \times A$$
$$AKWH_{C,CAC} = (2.57 - 1.49) \times A$$
$$AKWH_{C,CAC} = 1.08 \times A$$

Cooling (Room A/C Only): (Note [3]):

$$AKWH_{C,RAC} = (28.3\%) \times AKWH_{C,CAC}$$
$$AKWH_{C,RAC} = 0.305 \times A$$

Retrofit Gross Energy Savings, Fossil Fuel

Window Type	AGU (Ccf/ft ²)	AOU (gal/ft²)	APG _H (gal/ft ²)
Single Pane ("leaky")	1.39	1.03	1.57
Single Pane ("tight") (baseline)	1.08	0.80	1.21
Double Pane (or single with storm)	0.53	0.39	0.59
ENERGY STAR – Double Pane	0.28	0.20	0.31
ENERGY STAR – Triple Pane	0.18	0.13	0.20

Table 4-TTT: Annual Fossil Fuel Energy Usage

Savings by heating fuel:

$$A = \frac{D_H \times D_W}{144^{in^2/f^2}}$$

Natural gas:

 $ACCF_{H} = (AGU_{b} - AGU_{es}) \times A$ $ACCF_{H} = (1.08 - 0.28) \times A$ $ACCF_{H} = 0.80 \times A$

Oil:

$$AOG_{H} = (AOU_{b} - AOU_{es}) \times A$$
$$AOG_{H} = (0.80 - 0.20) \times A$$
$$AOG_{H} = 0.60 \times A$$

Propane:

$$APG_{H} = (APU_{b} - APU_{es}) \times A$$
$$APG_{H} = (1.21 - 0.31) \times A$$
$$APG_{H} = 0.90 \times A$$

Retrofit Gross Energy Savings, Example

A single pane $24'' \times 36''$ window is replaced by an ENERGY STAR double pane window in a home cooled by central A/C and heated by electric resistance.

$$A = \frac{24 in \times 36 in}{144^{sqin}/sf} = 6 sq ft$$
$$AKWH_{H} = 16.36^{kWh}/sf \times 6 sqft = 98 kWh$$

$$AKWH_C = 1.08^{kWh}/s_f \times 6 \, sqft = 6.5 \, kWh$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

If home has electric resistance heat:

$$WKW = AKWH_{H,R} \times \frac{PFW}{1000^{W}_{kW}} = 16.36^{kWh}_{ft^{2}} \times A \times \frac{0.570^{W}_{kWh}}{1000^{W}_{kW}} = 0.0093^{kW}_{ft^{2}} \times A$$

If home has a heat pump (Note [1]):

$$WKW = AKWH_{H,HP} \times \frac{PFW}{1000} = \frac{0.0093}{2} \times A = 0.00465 \times A$$

If home has central air conditioning (Note [2]):

$$SKW_{C,CAC} = (0.0046 \, {}^{kW}_{sf} - 0.0025 \, {}^{kW}_{sf}) \times CF_S \times A$$
$$SKW_{C,CAC} = 0.0012 \, {}^{kW}_{sf} \times A$$

If home has one or more room air conditioners (Note [3]):

$$\begin{aligned} SKW_{C,RAC} &= (25.1\%) \times SKW_{C,CAC} \\ SKW_{C,RAC} &= 0.00031^{kW} / s_f \times A \end{aligned}$$

Retrofit Gross Peak Day Savings, Natural Gas

$$PD_{H} = ACCF_{H} \times PDF_{H}$$

Retrofit Gross Peak Demand Savings, Example

For the above example with electric resistance heat and central air conditioning, demand savings are as follows:

$$WKW = 0.0093 \, kW/_{sf} \times 6 \, ft^2 = 0.056 \, kW$$

$$SKW_{CAC} = 0.0012 \, kW/s_f \times 6 \, ft^2 = 0.0072 \, kW$$

Changes from Last Version

• Added in note about glass doors.

References

- [1] Lawrence Berkeley National Laboratory, RESFEN 5.0 computer software, May 12, 2005. http://windows.lbl.gov/software.
- [2] KEMA, Evaluation of the Weatherization Residential Assistance Partnership and Helps Programs (WRAP/Helps), Sep. 10, 2010.
- [3] Nexant Market Research, Inc., "Market Assessment for ENERGY STAR Room Air Conditioners in Connecticut," Cambridge, MA, 2007, pp. 17-18.
- [4] RLW Analytics, "Final Report: Coincidence Factor Study: Residential Room Air Conditioners," Middletown, CT, 2008, pp. iv and 22.
- [5] ADM Associates, Inc., "Residential Central A/C Regional Evaluation," Sacramento, CA, 2009, pp. 4-4.
- [6] ENERGY STAR Program Requirements for Residential Windows, Doors, and Skylights Partner Commitments, Jan. 1, 2016.

Notes

- [1] Heat pump energy savings are one-half of electric resistance savings based on a 2.0 COP. Since heat pumps use backup resistance heat during winter peak, winter demand savings for heat pumps equals one-half those of resistance heat demand savings.
- [2] The usage values were developed for different fuel types and windows using RESFEN from **Ref** [1]. The values from that analysis are shown in the tables.
- [3] Room A/C cooling savings are derived from factors found in Ref [3], Ref [4], and Ref [5].

4.4.9 THERMAL ENCLOSURE

Description of Measure

New homes that meet or exceed the RESNET Grade 1 High Performance insulation standard. In addition, homes must have at least R-40 ceiling insulation and R-21 above grade wall insulation and must have a mechanical ventilation system.

Savings Methodology

The R values for walls and ceilings reflect the nominal R value, not the total R value of the assembly.

<u>Note</u>: Thermal mass does not equate to R-value. Solid wood walls (e.g., log cabins) are not considered high-performance walls and do not qualify because they do not meet the R-value or infiltration requirements. For rated homes, savings from this measure are superseded by REM savings.

Savings were calculated for both electric and fossil fuels based on REM/Rate modeling of homes with the insulation standards required by this measure compared to the Baseline new home (**Ref [1]**).

Inputs

Table 4-UUU: Inputs

Symbol	Description	Units
А	Surface Area Above Grade of Conditioned Space	ft ²
	System/Fuel Type (e.g., electric resistance, heat pump, air handler, central A/C, gas, oil, propane, etc.)	

Nomenclature

Table 4-VVV: Nomenclature

Symbol	Description	Units	Values	Comments
А	Surface Area Above Grade of Conditioned	ft ²		Inputs
	Space			
ACCF _H	Annual Natural Gas Savings, Heating	ccf		
AKWH _H	Annual Electric Energy Savings, Heating	kWh		
AKWH _c	Annual Electric Energy Savings, Cooling	kWh		
AOG _H	Annual Oil Savings, Heating	Gal		
APG _H	Annual Propane Savings, Heating	Gal		
PD _H	Natural Gas Peak Day Savings – Heating		0.00977	Appendix Two
REM	Savings Using Residential Energy Modeling			Note [1]
	Software			
REM _{skw}	Modeled Summer kW per ft ²	kW/ft ²	0.00004	Note [1]
REMWKW	Modeled Winter kW per ft ²	kW/ft ²	0.00039	Note [1],
				Note [2]
SKW	Summer Demand Savings	kW		
WKW	Winter Demand Savings	kW		

Lost Opportunity Gross Energy Savings, Electric

Table 4-WWW: Electric Savings per ft² (Note [1])

System Type	Symbol	Energy Savings	Units
Electric Resistance	REM _H	0.910	kWh/ ft ²
Heat Pump Heating	REM _H	0.530	kWh/ ft ²
Ground Source Heat Pump Heating	REMH	0.295	kWh/ ft ²
Air Handler Heating (fan)	REM _F	0.018	kWh/ ft ²
Cooling	REMc	0.008	kWh/ ft ²

For Electric Resistance, or Heat Pump Systems:

$$AKWH_{H} = REM_{H} \times A$$

For Fossil Fuel heating with air handling unit:

$$AKWH_{H} = REM_{F} \times A$$

Homes with Central A/C:

$$AKWH_C = REM_C \times A$$

Lost Opportunity Gross Energy Savings, Fossil Fuel

Heating Fuel	Symbol	Energy Savings	Units
Fossil Fuel Savings		0.0039	MMBtu/ft ²
Natural Gas	REM _G	0.0354	Ccf/ ft ²
Oil	REMo	0.0279	Gal/ ft ²
Propane	REMP	0.0392	Gal/ ft ²

Table 4-XXX: Fossil Fuel Savings per ft² (Note [1])

For homes with natural gas heating system:

$$ACCF_{H} = REM_{G} \times A$$

For homes with oil heating system:

$$AOG_{H} = REM_{O} \times A$$

For homes with propane heating system:

$$APG_H = REM_P \times A$$

Lost Opportunity Gross Energy Savings, Example

Insulation was installed in a new home and the insulation meets the ENERGY STAR thermal bypass requirements. The home is equipped with a natural gas furnace and a central A/C. The total floor area of conditioned space is 1,100 ft². What are the annual energy savings?

$$ACCF_{H} = REM_{G} \times A = 0.0354 \times 1,100 = 39 Ccf$$

Additional electric savings claimed for air handling system:

$$AKWH_{H} = REM_{F} \times A = 0.018 \times 1,100 = 19 \, kWh$$

Additional cooling savings claimed for central A/C system:

$$AKWH_{C} = REM_{C} \times A = 0.008 \times 1,100 = 9kWh$$

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

- $WKW_H = REM_{WKW} \times A$ (Electric Resistance and Heat Pump)
- $SKW_C = REM_{SKW} \times A$ (Central A/C or Heat Pump providing cooling)

Lost Opportunity Gross Peak Day Savings, Natural Gas

$$PD_{H} = ACCF_{H} \times PDF_{H}$$

Lost Opportunity Gross Peak Demand Savings, Example

Insulation was installed in a new home. The insulation meets the RESNET Grade 1 High Performance insulation standard. The home is equipped with a natural gas furnace and a central A/C. The total floor area of conditioned space is 1,500 ft². What are the peak demand savings (electric and natural gas)?

Summer demand savings:

$$WKW_{H} = REM_{WKW} \times A = 0.0004 \times 1,100 = 0.43 \ kW$$

 $SKW_{C} = REM_{SKW} \times A = 0.00004 \times 1,100 = 0.05 \ kW$

Natural gas peak day savings:

$$PD_{H} = ACCF_{H} \times PDF_{H} = 53 \times 0.00977 = 0.52Ccf$$

Non-Energy Benefits

Increased personal comfort.

Changes from Last Version

No changes.

References

[1] NMR Group Inc., Connecticut 2011 Baseline Study of Single- Family Residential New Construction, Oct. 1, 2012.

Notes

- [1] REM/Rate[™] is a residential energy analysis, code compliance and rating software developed by Architectural Energy Corporation. This software calculates heating, cooling, hot water, lighting, and appliance energy loads, consumption and costs for new and existing single and multi-family homes.
- [2] Winter Demand Savings (kW) only apply for Electric Resistance, Heat Pump and Ground Source Heat Pump heating systems.

4.4.10 INSTALL STORM WINDOW

Description of Measure

Installation of a storm window to augment an existing single pane window that is between the conditioned space and the outdoors.

Savings Methodology

The savings for this measure are calculated using the installed storm window area and usage factors develop using RESFEN (**Ref [1**]) to model different window types and heating fuels. The results of that analysis are shown in Tables 4-AAAA and 4-BBBB. The energy savings are calculated by subtracting the heating fuel specific Double Pane Value from the single pane "tight" value and multiplying by the storm window area. Because the cooling usage was the same for the baseline and the Double Pane the cooling savings are zero.

<u>Note</u>: Savings may not be claimed if the window is located in an unconditioned space such as an unheated porch, basement, or hallway.

Inputs

Symbol	Description	Units
	No. Storm Windows Installed	
D _H	Height of the Window	Inches
Dw	Width of the Window	Inches
	Primary Existing Heating Fuel Type	

Table 4-YYY: Inputs

Nomenclature

Table 4-ZZZ: Nomenclature

Symbol	Description	Units	Values	Comments
А	Area of the Window	ft²		
ACCF _H	Annual Gas Savings - Heating	ccf		
AEC	Annual Electric Cooling Usage	kWh/ft ²	Table 4-AAAA	Note [2]
AEH	Annual Electric Heating Usage	kWh/ft ²	Table 4-AAAA	Note [2]
AGU	Annual Natural Gas Usage	ccf/ft ²	Table 4-BBB	Note [2]
AKWH _H	Annual Electric Energy Savings - Heating	kWh		
AOG _H	Annual Oil Savings - Heating	gallons		
AOU	Annual Oil Usage	gal/ft ²	Table 4-BBB	Note [2]
APG _H	Annual Propane Savings - Heating	gallons		
APU	Annual Propane Usage	gal/ft ²	Table 4-BBB	Note [2]
D _H	Height of the Window	inch		
Dw	Width of the Window	inch		
PFW	Winter Peak Factor	W per kWh	0.570	Ref [2]
SKW	Summer Coincident Peak Demand Savings	kW		
WKW	Winter Coincident Peak Demand Savings	kW		
b	Baseline			
···dp	Double Pane			
HP	Heat Pump Heating			
•••R	Resistance Heating			

Retrofit Gross Energy Savings, Electric

Table 4-AAAA: Annual Electric Energy Usage

Window Type	AEH (kWh/ft²)	AEC (kWh/ft²)
Single Pane ("leaky")	28.61	2.65
Single Pane ("tight")	22.02	2.57
Double Pane (or single with storm)	10.79	2.57
ENERGY STAR	5.66	1.49

Savings by heating fuel:

$$A = \frac{D_H \times D_W}{144 \frac{in^2}{ft^2}}$$

Heating (Electric Resistive Heating and Heat Pump, Note [1]):

 $ACCF_H = 0.55 \times A$

 $AOG_H = 0.41 \times A$

$$AKWH_{H,R} = (AEH_b - AEH_{dp}) \times A$$
$$AKWH_{H,R} = (22.02 - 10.79) \times A$$
$$AKWH_{H,R} = 11.23 \times A$$
$$AKWH_{H,HP} = 5.62 \times A$$

Retrofit Gross Energy Savings, Fossil Fuel

Table 4-BBBB: Annual Natural G	Gas Energy Usage
--------------------------------	------------------

Window Type	AGU (kWh/ft²)	AOU (gal/ft ²)	APG (gal/ft²)
Single Pane ("leaky")	1.39	1.03	1.57
Single Pane ("tight")	1.08	0.80	1.21
Double Pane (or single with storm)	0.53	0.39	0.59
ENERGY STAR	0.28	0.20	0.31

Savings by heating fuel:

$$A = \frac{D_H \times D_W}{144 \frac{in^2}{ft^2}}$$

 $ACCF_{H} = (AGU_{b} - AGU_{dp}) \times A = (1.08 - 0.53) \times A$

Natural gas:

Oil:

$$AOG_{H} = (AOU_{b} - AOU_{dp}) \times A = (0.80 - 0.39) \times A$$

Propane:

$$APG_{H} = (APU_{b} - APU_{dp}) \times A = (1.21 - 0.59) \times A$$
$$APG_{H} = 0.62 \times A$$

Retrofit Gross Energy Savings, Example

A new storm window is added to a single pane 24" x 36" window heated by electric resistance.

$$A = \frac{24 in \times 36 in}{144 \frac{in^{2}}{ft^{2}}} = 6 \, sq \, ft$$

$$AKWH_{H} = 11.25 \frac{kWh}{ft^{2}} \times 6 \, ft^{2} = 68 \, kWh$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer) If home has electric resistance heat:

$$WKW = AKWH_{H,R} \times \frac{PFW}{1000^{W}_{kW}} = 11.23^{kWh}_{ft^2} \times A \times \frac{0.570^{W}_{kWh}}{1000^{W}_{kW}} = 0.0064^{kW}_{ft^2} \times A$$

If home has a heat pump: (Note [1]):

$$WKW = \frac{AKWH_{H,R}}{2} \times \frac{PFW}{1000^{W}_{kW}} = \frac{0.0064^{kW}_{ft^{2}}}{2} \times A = 0.0032^{kW}_{ft^{2}} \times A$$
$$SKW = 0$$

Retrofit Gross Peak Demand Savings, Example

For the above example with electric resistance heat and central A/C, demand savings are as follows:

$$WKW = 0.0064 \frac{kW}{sf} \times 6 \, sq \, ft = 0.038 \, kW$$

$$SKW = 0 kW$$

Changes from Last Version

No changes.

References

- [1] Lawrence Berkeley National Laboratory, RESFEN 5.0 computer software, May 12, 2005. <u>http://windows.lbl.gov/software</u>.
- [2] KEMA, Evaluation of the Weatherization Residential Assistance Partnership and Helps Programs (WRAP/Helps), Sep. 10, 2010.

Notes

- [1] Heat pump savings are one-half of electric resistance savings. Since heat pumps use backup resistance heat during winter peak, winter demand savings for heat pumps equals resistance heat demand savings.
- [2] The usage values were developed for different fuel types and windows using RESFEN from Ref[1]. The values from that analysis are shown in the tables.

4.4.11 INSULATE ATTIC OPENINGS

Description of Measure

Thermal barrier applied to attic hatch, attic stairs, or whole house fan.

Savings Methodology

The energy savings are estimated in two parts: conductive savings and infiltration reduction savings. The conductive savings are calculated using a degree day analysis. The infiltration reduction will be included in the blower door reduction (Measure 4.4.4) whenever possible or be estimated based on the KEMA Evaluation (Ref [1]) in combination with ASHRAE 1997 Fundamentals Handbook (Note [1]).

<u>**Reminder**</u>: Only include infiltration savings, if not included in blower door measure.

Inputs

Table 4-CCCC: Inputs

Symbol	Description	Units
	Type of Attic Penetration Being Insulated	
	Was the Infiltration Reduction Included in Blower Door Measurements?	
	Heating Fuel/Heating System Type (e.g., electric resistance, heat pump, gas, etc.)	

Nomenclature

Table 4-DDDD: Nomenclature

Symbol	Description	Units	Values	Comments
А	Total Area of Thermal Barrier	ft ²		
ABTU	Annual Btu Savings	Btu/yr		
ABTU _{Conductive}	Annual Btu Savings - Conductive	Btu/yr	Table 4- EEEE	
$ABTU_{Infiltration}$	Annual Btu Savings - Infiltration	Btu/yr	Table 4- FFFF	
ACCF _H	Annual Natural Gas Savings - Heating	ccf/yr	Table 4- HHHH	
AKWH _H	Annual Electric Savings - Heating	kWh/yr		
$AKWH_{Conductive}$	Annual Electric Savings - Conductive	kWh/yr	Table 4- GGGG	
$AKWH_{Infiltration}$	Annual Electric Savings - Infiltration	kWh/yr	Table 4- GGGG	
AOG _H	Annual Oil Savings - Heating	Gal/yr	Table 4- HHHH	
APG _H	Annual Propane Savings - Heating	Gal/yr	Table 4- HHHH	
EF	Heating System Efficiency (Fossil fuel)	%	75%	Estimated
F _{adj}	ASHRAE Adjustment Factor		0.64	Ref [3]
HDD	Heating Degree Days - CT Average	^o F-day	5,885	Ref [2]
PD _H	Peak Day Savings - Heating	ccf	Table 4- JJJJ	
PDF _H	Peak Day Factor – Natural Gas Heating		0.00977	Appendix One
PFw	Peak Factor - Winter	Watts/kWh	0.57	Ref [1]
R _e	Effective R-value - Existing	ft²hr⁰F/Btu	Table 4- EEEE	
Ri	Effective R-value - Installed	ft ² hrºF/Btu	Table 4- EEEE	
WKW _H	Winter Seasonal Demand Savings - Heating	kW	Table 4- IIII	

Retrofit Gross Energy Savings, Electric

$$ABTU = ABTU_{Conductive} + ABTU_{Infiltration}$$

Conductive savings:

$$ABTU_{Conductive} = A \times \left(\frac{1}{R_e} - \frac{1}{R_i}\right) \times HDD \times 24 \frac{hrs}{day} \times F_{adj}$$

Insulation Measure	R_{e}	R _i	А	$ABTU_{Conductive}$
Attic Hatch	1.69	21.7	5.60	276,065
Attic Pull Down Stairs	1.69	11.7	11.25	514,816
Whole House Fan	1.32	11.3	4.00	241,922

Table 4-EEEE: Annual Btu Savings - Conductive

Table 4-FFFF: Annual Btu Savings - Infiltration

Insulation Measure	ABTU _{Inflitration}
Attic Hatch	154,876
Attic Pull Down Stairs	533,461
Whole House Fan	243,195

<u>**Reminder**</u>: Only include infiltration savings if not included in blower door measure.

Annual Electric Savings:

$$AKWH_{H} = AKWH_{Conductive} + AKWH_{Infiltration}$$
$$kWh = \frac{Btu}{3,412Btu / kWh}$$

Table 4-GGGG: Annual Electric Savings

Insulation Measure	AKWH _{Conductive} For Electric Resistance	AKWH _{Infiltration} For Electric Resistance	AKWH _{Conductive} For Heat pump	AKWH _{Infiltration} For Heat pump
Attic Hatch	81	45	40.5	22.5
Attic Pull Down	151	156	75.5	78
Stairs				
Whole House Fan	71	71	35.5	35.5

<u>Reminder</u>: Only include infiltration savings if not included in blower door measure.

Retrofit Gross Energy Savings, Fossil Fuel

Using the savings from Table 4-EEEE, Table 4-FFFF, and an equipment efficiency of 75%, the fossil fuel savings are as follows.

Savings by fuel type:

$$A = \frac{D_H \times D_W}{144 \frac{in^2}{ft^2}}$$

Natural Gas:

$$ACCF_{H} = \frac{ABTU_{H}}{75\% \times 102,900 \frac{Btu}{Ccf}}$$

Oil:

$$AOG_{H} = \frac{ABTU_{H}}{75\% \times 138,690^{Btu}/_{Gal}}$$

Propane:

$$APG_{H} = \frac{ABTU_{H}}{75\% \times 91,330^{Btu'_{Gal}}}$$

Table 4-HHHH: Annual Fossil Fuel Savings

Insulation Measure	ACCF _H		AOG _H		APG _H	
	Cond	Infil	Cond	Infil	Cond	Infil
Attic Hatch	3.6	2.0	2.7	1.5	4.0	2.3
Attic Pull Down Stairs	6.7	6.9	4.9	5.1	7.5	7.8
Whole House Fan	3.1	3.2	2.3	2.3	3.5	3.6

<u>**Reminder**</u>: Only include infiltration savings if measure if not included in blower door.

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

Insulation Measure	WKW _{H Conductive} For Electric Resistanc	WKW _{H Inflitration} For Electric Resistance	WKW _{H Conductive} For Heat Pump	WKW _{H Infiltration} For Heat Pump
Attic Hatch	0.05	0.03	0.02	0.01
Attic Pull Down Stairs	0.09	0.09	0.04	0.04
Whole House Fan	0.04	0.04	0.02	0.02

Table 4-IIII: Winter Demand Savings

Retrofit Gross Peak Day Savings, Natural Gas

 $PD_{H} = ACCF_{H} \times PDF_{H}$

Table 4-JJJJ: Peak Day Savings

Insulation Measure	$PD_{Conductive}$	PDInfiltration
Attic Hatch	0.03	0.02
Attic Pull Down Stairs	0.07	0.07
Whole House Fan	0.03	0.03

Changes from Last Version

No changes.

References

- [1] Evaluation of WRAP and Helps Programs, KEMA, 2010, Table ES-8, pp. 1-10.
- [2] Degree day data from the National Climatic Data Center, Divisional Data, CT state, Jan. 1979 to Dec. 2008, 30-day average. Available at: http://www.7.made.neeg.acu/CDO/CDOPicipienelCalect.icm
 - http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp.
- [3] ASHRAE degree-day correction.1989 ASHRAE Handbook Fundamentals, 28.2, Fig 1.

Notes

[1] ASHRAE 1997 Handbook – Fundamentals, page 25.16, was used calculate relative infiltration of these measures to the Infiltration savings from **Ref** [1].

Baseline assumptions:

- $R_{\text{existing}} = 0.61 + 0.47 + 0.61 = 1.69$ for hatch and stairs; and
- $R_{\text{existing}} = 0.61 + 0.10 + 0.61 = 1.32$ for fan.

Where:

- 3/8" particle board = R 0.47; and
- Air film = 0.61.
- [2] Heat pump energy savings are one half of electric resistance savings based on a 2.0 COP. Since heat pumps use backup resistance heat during winter peak, winter demand savings for heat pumps equals resistance heat demand savings.

4.4.13 INFILTRATION REDUCTION (Prescriptive)

Description of Measure

Prescriptive infiltration reduction measures not validated by Blower Door testing, including: Electric Outlet Covers, Door Sweeps, Door Kits, Caulking and Sealing, Polyethylene Tape, Weather-strip Doors/Windows, and Window Repairs.

Savings Methodology

Savings from this measure shall only be claimed if a Blower Door Test (4.4.4) is not feasible. Savings estimates based on actual measured infiltration reduction (through blower door testing) are more precise.

<u>Note</u>: Infiltration reduction measures must be located directly between conditioned space and unconditioned space to be eligible for energy savings. Savings may not be claimed for both a Door Sweep and a Door Kit for weatherization of a single door.

Savings are calculated by multiplying the savings per unit by the number of units, and then adding all the different measure types together to get total savings. No summer demand savings may be claimed since cooling energy savings are not quantified.

A weatherization project should be custom only if it exhibits outlier type behavior which would clearly make the existing savings algorithms inappropriate to use, and if the existing savings assumptions would produce an error of unacceptable magnitude. In such a case, the energy and demand savings should be well documented.

Inputs

Table 4-KKKK: Inputs

Symbol	Description
n	Number of Each Air Sealing Unit Installed
length	Total Length Installed of Caulking and Sealing, including Polyethylene Tape (in linear feet)
	Heating System Type

Nomenclature

Symbol	Description	Units	Values	Comments
···gasket	Installation of Air Sealing Gasket on an	per gasket	Tables	Ref [1], p. 1-11,
	Electric Outlet		4-MMMM,	Table ES 9
			4-NNNN	
···door kit	Installation of Door Sweep or Door Kit	per sweep	Tables	Ref [1] , p. 1-11,
			4-MMMM,	Table ES 9
			4-NNNN	
···sealing	Foot of Caulking, Sealing, or Polyethylene	per foot	Tables	Ref [1] , p. 1-11,
	Таре		4-MMMM,	Table ES 9
			4-NNNN	
wx	Window Repaired, Window Weather-	per linear	Tables	Ref [1] , p. 1-11,
	stripped, or Door Weather-stripped	foot	4-MMMM,	Table ES 9
			4-NNNN	
ACCF	Annual Natural Gas Savings	ccf/yr		
AOG	Annual Savings for Oil Heat	Gal/yr/unit		
APG	Annual Savings for Propane Heat	Gal/yr/unit		
EF	Fossil Fuel System Efficiency, Including		0.75	
	Distribution Loss			
PDF _H	Peak Day Factor – Natural Gas Heating		0.00977	Appendix One
PFw	Winter Peak Factor	W/kWh	0.570	Ref [1]
WKW	Winter Seasonal Peak Electric Demand	kW		
	Savings			

Table 4-LLLL: Nomenclature

Retrofit Gross Energy Savings, Electric

Table 4-MMMM: Electric Savings for Infiltration Reduction Measures

Savings	Units	Annual Savings for Electric Resistance Heating (kWh)	Annual Savings for Heat Pump (kWh)
AKWH gasket	kWh per gasket	9	4.5
AKWH _{door kit}	kWh per sweep	173	86.5
AKWH _{sealing}	kWh per linear ft	9.9	4.95
AKWH _{wx}	kWh per linear ft	11.5	5.75

Retrofit Gross Energy Savings, Fossil Fuel

Annual Btu Savings =
$$\frac{AKWH \times 3412 Btu/_{kWh}}{75\%}$$

Table 4-NNNN: Fossil Fuel Savings for Infiltration Reduction Measures

Measure	Units	ACCF	AOG	APG
Gasket	fuel per gasket	0.41	0.29	0.45
Door Kit	fuel per sweep	7.87	5.62	8.59
Sealing	fuel per linear foot	0.451	0.322	0.492
Window & Door Weatherization	fuel per linear foot	0.524	0.374	0.571

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

 $WKW = AKWH_H \times PF_W / 1000 W_{kW}$

Retrofit Gross Peak Day Savings, Natural Gas

$$PD_{H} = ACCF_{H} \times PDF_{H}$$

Non-Energy Benefits

Increased personal comfort and decreased draftiness.

Changes from Last Version

No changes.

References

[1] KEMA, Evaluation of the Weatherization Residential Assistance Partnership and Helps Programs (WRAP/Helps), Sep. 10, 2010.

4.4.13 WALL INSULATION

Description of Measure

Installation of insulation in walls that separates conditioned space and unconditioned space, including: unconditioned basements, attics, and crawl spaces.

Savings Methodology

Energy savings are calculated using parallel flow method based on a typical 2x4 wall. Factors 7/12 and - 4are used to adjust for typical wall structure and framing. The savings are calculated using a degree day analysis and the difference in the pre and post R-values.

<u>Note</u>: The savings presented here do not apply to walls between conditioned spaces and fully enclosed unconditioned spaces, such as porches or hallways.

Inputs

Table 4-0000: Inputs

Symbol	Description	Units
R _{pre}	Existing Insulation R-value	ft²hrºF/Btu
R _{post}	Insulation R-value After Upgrade	ft²hr⁰F/Btu
А	Total area of Wall Insulation	ft²
GF	Ground Factor; Percent of Unconditioned Space Walls Above-Grade	%
	(rounded to nearest %)	

Nomenclature

Table 4-PPPP: Nomenclature

Symbol	Description	Units	Values	Comments
1 kWh	Unit Conversion	kWh	3,412	Unit conversion
			Btu	
A	Total Gross Area of Wall Insulation	ft ²		
ACCF _H	Annual Natural Gas Savings	ccf/yr		
AKWH	Annual Electric Energy Savings	kWh/yr		
AKWH _{H,HP}	Annual Electric Savings due to Heat Pump Heating	kWh/yr		
AKWH _{H,R}	Annual Electric Savings due to Electric Resistance	kWh/yr		
	Heating			
AOG _H	Annual Savings for Oil Heat	Gal/yr/unit		
APG _H	Annual Savings for Propane Heat	Gal/yr/unit		
GF	Above Grade: Adjustment for a wall between conditioned and		1.0	Note [3]
	ambient space which is 100% above grade (0 % below grade). This includes cold (uninsulated or open) crawl spaces and cantilever			
	floors			
	Mixed Grade: Adjustment for a wall between conditioned and		0.75	Note [3]
	ambient space which is between 31% and 99% above grade			
	(inclusive) on average			
	Below Grade: Adjustment for a wall between conditioned and ambient space which is between 0% and 30% above grade		0.60	Notes [3]
	(inclusive) on average (e.g., a typical below grade basement)			
CF	Summer Seasonal Peak Coincidence Factor		0.59	Appendix One
EERB	Energy Efficiency Ratio, Baseline	Btu/Watt-	11	
		hr		
EF	Heating System Efficiency	%	75	Estimated
F_{adj}	ASHRAE Adjustment Factor		0.64	Ref [1]
HDD	Heating Degree Days, CT State Average	⁰ F-day	5,885	Ref [2]
PDF _H	Peak Day Factor - Heating		0.00977	Appendix One
PD _H	Peak Day Savings - Heating			
R _{existing}	Effective R-value Before Upgrade	ft²hrºF/Btu		
R _{new}	Effective R-value After Upgrade	ft²hrºF/Btu		
R _{pre}	Existing Insulation R-value	ft²hr⁰F/Btu		
R _{post}	Insulation R-value After Upgrade	ft²hrºF/Btu		
SEER _B	Seasonal Energy Efficiency Ratio, Baseline	Btu/Watt-	13	
		hr		
SKW	Summer Peak Demand Savings	kW		
WKW	Winter Peak Demand Savings	kW		
WPF	Winter Peak Factor	W/ kWh	0.57	Ref [4]
ΔT_{BIN}	The Sum of the Temperature BIN Hours (based on		3,888	Ref [3]a
	Hartford) times Delta between Outside Air for each BIN,			
	and Average Indoor Temperature (T _i = 76.5 ºF)			
ΔT_{summer}	Temperature Difference	٩F	20.5 ºF	Ref [3] a and b
	(peak T _{outside} = 97 ºF, T _{inside} = 76.5 ºF)			
CAC	Central Air Conditioner			
RAC	Room Air Conditioners (Cooling Only)			Note [1]

Retrofit Gross Energy Savings, Electric

Effective R-value:

$$R_{existing} = \left(\frac{7}{12} \times R_{pre}\right) + 4$$
$$R_{new} = \left(\frac{7}{12} \times R_{post}\right) + 4$$

Heating savings:

$$ABTU_{H} = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times HDD \times 24 \times F_{Adj} \times A \times GF$$

For electric resistance heating:

$$AKWH_{H,R} = \frac{ABTU_H}{3,412}$$

For a heat pump:

$$AKWH_{H,HP} = \frac{AKWH_{H,R}}{2}$$

Cooling Savings (Central A/C only), and above grade walls:

$$AKWH_{C,CAC} = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times \Delta T_{Bin} \times A \times \frac{1}{SEER_B \times 1,000}$$

Cooling Savings (Room A/C only), and above grade walls (Note [1]):

$$AKWH_{C,RAC} = (28.3\%) \times AKWH_{C,CAC}$$

Retrofit Gross Energy Savings, Fossil Fuel

$$ACCF_{H} = \frac{ABTU_{H}}{75\% \times 102,900}$$
$$APG_{H} = \frac{ABTU_{H}}{75\% \times 91,330}$$
$$AOG_{H} = \frac{ABTU_{H}}{75\% \times 138,690}$$

Reminder: System efficiency is 75%.

Retrofit Gross Energy Savings, Example

Wall insulation in a house is upgraded from R-6 to a total of R-13. The total square feet insulation added is 100. The wall is above grade and the home is heated by electric resistance heating system and has a central A/C. What are the annual electric energy savings?

$$R_{existing} = \left(\frac{7}{12} \times R_{pre}\right) + 4 = \left(\frac{7}{12} \times 6\right) + 4 = 7.5$$
$$R_{new} = \left(\frac{7}{12} \times R_{post}\right) + 4 = \left(\frac{7}{12} \times 13\right) + 4 = 11.6$$

Using the equation for heating savings:

$$ABTU_{H} = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times HDD \times 24 \times F_{Adj} \times A \times GF$$
$$ABTU_{H} = \left(\frac{1}{7.5} - \frac{1}{11.6}\right) \times 5885 \times 24 \times 0.64 \times 100 \times 1$$
$$ABTU_{H} = 425,993 Btu$$

Heating savings for electric resistance system:

$$AKWH_{H,R} = \frac{ABTU_{H}}{3,412}$$
$$AKWH_{H,R} = \frac{ABTU_{H}}{3,412}$$

$$AKWH_{H,R} = \frac{ABTU_{H}}{3.412} = 124.8 \, kWh$$

Using the equation for cooling savings:

$$AKWH_{C}, CAC = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times \Delta T_{bin} \times A \times \frac{1}{SEER_{B} \times 1000}$$
$$AKWH_{C,CAC} = \left(\frac{1}{7.5} \times \frac{1}{11.6}\right) \times 3,888 \times 100 \times \frac{1}{13 \times 1,000} = 1.4 \, kWh$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

For homes with electric resistance heat:

$$WKW = \frac{AKWH_{H}(Electric_\text{Re sis tan }ce)}{1,000} \times WPF$$
$$WKW = \frac{AKWH_{H}(Electric_\text{Re sis tan }ce)}{1,000} \times 0.57$$

For homes with a heat pump:

$$WKW = \frac{AKWH_H}{1,000} \times 0.57$$

For central A/C only:

$$SKW_{CAC} = CF \times \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times \Delta T_{Summer} \times A \times \frac{1}{EER_B \times 1,000}$$

For Room A/C only, (Note [1]):

$$SKW_{RAC} = (25.1\%) \times SKW_{CAC}$$

Retrofit Gross Peak Day Savings, Natural Gas

$$PD_{H} = ACCF_{H} \times PDF_{H}$$

2019 Program Savings Document

Retrofit Gross Peak Demand Savings, Example

Insulation in a house is upgraded from R-6 to a total of R-13. The total square feet insulation added is 100. The home is heated by electric resistance heating system and has a central A/C. What are the demand savings?

$$WKW = \frac{AKWH_{H}(Electric _ \text{Re}\,sis\,\tan ce)}{1,000} \times 0.57$$

From the previous example, AKWHH = 124.8 kWh, therefore:

$$WKW = \frac{124.8}{1,000} \times 0.57 = 0.071 \, kW$$

Using the equation:

$$SKW_{CAC} = CF \times \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times \Delta T_{Summer} \times A \times \frac{1}{EER_{B} \times 1,000}$$
$$SKW_{CAC} = 0.59 \times \left(\frac{1}{7.5} - \frac{1}{11.6}\right) \times 20.5 \times 100 \times \frac{1}{11 \times 1,000} = 0.0052 \ kW$$

Changes from Last Version

• Corrected Ref [2], "30-year average."

References

- [1] ASHRAE degree-day correction. *1989 ASHRAE Handbook Fundamentals*, 28.2, Fig 1.
- Degree Day data from the National Climatic Data Center, Divisional Data, CT state, Jan. 1979 to Dec 2008, 30-year average. Available at: <u>http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp</u>.
- [3] Residential Central A/C Regional Evaluation, ADM Associates, Inc., Nov. 2009, a) Table B-4 (Hartford) and p. B-9 and b) Figures 4-1&2 (Hartford) and pp. 4-15.
- [4] Evaluation of WRAP and Helps Programs, KEMA, 2010, Table ES-8, pp. 1-10.
- [5] Nexant Market Research, Inc., "Market Assessment for ENERGY STAR Room Air Conditioners in Connecticut," Cambridge, MA, 2007, pp. 17, 18.
- [6] RLW Analytics, "Final Report: Coincidence Factor Study: Residential Room Air Conditioners," Middletown, CT, 2008, pp. iv and 22.
- [7] ADM Associates, Inc., "Residential Central A/C Regional Evaluation," Sacramento, CA, 2009, p. 4-4.

Notes

- Room Air Conditioning cooling savings are derived from factors found in Ref [5], Ref [6], and Ref [7].
- [2] Calculated the R_{effective} of un-insulated wall assembly based on see Table 4-QQQQ below.

	Cavity	Framing
Outside Air Film	0.17	0.17
Lapped Wood Siding	0.80	0.80
Sheathing ¼"	0.31	0.31
Air Space 3.5"/or Framing	1.00	4.38
Gypsum Board (drywall ½")	0.45	0.45
Interior Air Film	0.68	0.68
Total R	3.41	6.79
Relative Area % based on 2x4 16" OC	0.75	0.25
R Effective Whole Wall Assembly 4		1

Table 4-QQQQ: Effective of Un-Insulated Wall Assembly

The above R values can be found at: <u>http://www.allwallsystem.com/design/RValueTable.html</u>.

[3] Grade Factors were developed using REMrate software.

.

4.4.15 CEILING INSULATION

Description of Measure

Installation of batt or loose fill insulation located between conditioned area and ambient (attic or outside) space.

Savings Methodology

Energy savings are calculated using parallel flow method and typical ceiling structure. The savings are calculated using a degree day analysis and the difference in the pre and post R-values. The conductive savings are calculated using a degree day analysis. 0.5, 3, and 2 are factors used to adjust for typical wall structure/framing.

<u>Note</u>: The savings presented here do not apply to ceilings between conditioned spaces and fully enclosed unconditioned spaces, such as basement ceilings. It is assumed that attics are properly ventilated to the outside.

Inputs

Symbol	Description	Units
R _{pre}	Existing Insulation R-Value	ft²hrºF/Btu
R _{post}	Insulation R-value after Upgrade	ft²hrºF/Btu
А	Total Gross Area of Ceiling Insulation	ft²

Table 4-RRRR: Inputs

Nomenclature

Table 4-SSSS: Nomenclature

Symbol	Description	Units	Values	Comments
A	Total Gross Area of Ceiling Insulation	ft ²		
AKWH	Annual Electric Energy Savings	kWh		
ACCF _H	Annual Natural Gas Savings	ccf/yr		
AKWH	Annual Electric Energy Savings	kWh/yr		
AKWH _{H,HP}	Annual Electric Savings due to Heat Pump	kWh/yr		
	Heating			
AKWH _{H,R}	Annual Electric Savings due to Electric	kWh/yr		
	Resistance Heating			
AOG _H	Annual Savings for Oil Heat	Gal/yr/unit		
APG _H	Annual Savings for Propane Heat	Gal/yr/unit		
CF	Summer Seasonal Peak Coincidence Factor		0.59	Appendix One
EERB	Energy Efficiency Ratio, Baseline	Btu/Watt-	11	
		hr		
EF	Heating System Efficiency (fossil fuel)	%	75%	Estimated
F_{adj}	ASHRAE Adjustment Factor		0.64	Ref [1]
HDD	Heating Degree Days, CT State Average	⁰ F-day	5,885	Ref [2]
PDн	Peak Day Savings - Heating			
PDF _H	Peak Day Factor - Heating		0.00977	Appendix One
R _{existing}	Effective R-value before Upgrade	ft²hrºF/Btu	Calculated	
R _{new}	Effective R-value after Upgrade	ft²hrºF/Btu	Calculated	
R _{pre}	Existing Insulation R-value	ft²hrºF/Btu	Input	
R _{post}	Insulation R-value after Upgrade	ft²hrºF/Btu	Input	
SEER _B	Seasonal Energy Efficiency Ratio, Baseline	Btu/Watt-	13	
		hr		
SKW	Summer Peak Demand Savings	kW		
WKW	Winter Peak Demand Savings	kW		
WPF	Winter Peak Factor	W/ kWh	0.57	Ref [4]
ΔT_{BIN}	Is the sum of the temperature BIN hours (based		3,888	Ref [3]a
	on Hartford) times delta between outside			
	summer air for each BIN and average indoor			
	temperature (T _i = 76.5 ºF)			
ΔT_{summer}	Temperature Difference	₽F	20.5 ºF	Ref [3] a and
	(peak T _{outside} = 97 ºF, T _{inside} = 76.5 ºF)			Ref 3 [b]
H,R	Electric Resistance Heating			
H,HP	Heat Pump Heating			
C,CAC	Central A/C Cooling			
····C,RAC	Room A/C Cooling			Note [1]

Retrofit Gross Energy Savings, Electric

If	Use
R _{pre} <10	$R_{existing} = (0.5 \times R_{pre}) + 3$
If R _{pre} >=10	$R_{existing} = R_{pre} - 2$
R _{post} <10	$R_{new} = (0.5 \times R_{post}) + 3$
R _{post} >=10	$R_{new} = R_{post} - 2$

Table 4-TTTT: Effective R-values

$$ABTU_{H} = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times HDD \times 24 \times F_{Adj} \times A$$

For electric resistance heating savings:

$$AKWH_{H,R} = \frac{ABTU_{H}}{3,412^{Btu}/_{kWh}}$$

For heat pump:

$$AKWH_{H,HP} = \frac{AKWH_{H,R}}{2}$$

Cooling savings (Central A/C only):

$$AKWH_{C,CAC} = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times \Delta T_{Bin} \times A \times \frac{1}{SEER_{B} \times 1,000}$$

Cooling savings (Room A/C only), Note [1]:

$$AKWH_{C,RAC} = (28.3\%) \times AKWH_{C,CAC}$$

Retrofit Gross Energy Savings, Fossil Fuel

$$ACCF_{H} = \frac{ABTU_{H}}{75\% \times 102,900 \text{ }^{Btu}/_{Ccf}}$$
$$APG_{H} = \frac{ABTU_{H}}{75\% \times 91,330 \text{ }^{Btu}/_{Gal}}$$
$$AOG_{H} = \frac{ABTU_{H}}{75\% \times 138,690 \text{ }^{Btu}/_{Gal}}$$

Reminder: System Efficiency is 75%.

Retrofit Gross Energy Savings, Example

Ceiling insulation in a house is upgraded from R-9 to a total of R-60. The total square feet insulation added is 1,000. The home is heated by electric resistance heating system and has a central A/C. What are the annual electric energy savings?

Since Rpre <10:

$$R_{existing} = (0.5 \times R_{pre}) + 3$$
$$R_{existing} = (0.5 \times 9) + 3 = 7.5$$

Since Rpost >=10:

$$R_{new} = R_{post} - 2$$

$$R_{new} = 60 - 2 = 58$$

$$ABTU_{H} = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times HDD \times 24 \times F_{Adj} \times A$$

$$ABTU_{H} = \left(\frac{1}{7.5} - \frac{1}{58}\right) \times 5,885 \times 24 \times 0.64 \times 1000 = 10,493,969 Btu$$

$$AKWH_{H,R} = \frac{ABTU_{H}}{3,412 Bu}$$

$$AKWH_{H,R} = \frac{10,493,969 Btu}{3,412 Bu} = 3075 kWh$$

$$AKWH_{C}, CAC = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times \Delta T_{bin} \times A \times \frac{1}{SEER_{B} \times 1000}$$
$$AKWH_{C,CAC} = \left(\frac{1}{7.5} - \frac{1}{58}\right) \times 3,888 \times 1,000 \times \frac{1}{13 \times 1,000} = 35kWh$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

For homes with electric resistance heat:

$$WKW = \frac{AKWH_{H,R}}{1,000} \times WPF$$
$$WKW = \frac{AKWH_{H,R}}{1,000} \times 0.57$$

For homes with a heat pump:

$$WKW = \frac{AKWH_{H,HP}}{1,000} \times 0.57$$

For homes with Central A/C only or heat pump providing cooling:

$$SKW_{C,CAC} = CF \times \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times \Delta T_{Summer} \times A \times \frac{1}{EER_B \times 1,000}$$
$$SKW_{C,CAC} = CF \times \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times 20.5 \times A \times \frac{1}{11 \times 1,000}$$

For homes with Room A/C only, (Note [1]):

$$SKW_{C,RAC} = (25.1\%) \times SKW_{C,CAC}$$

Retrofit Gross Peak Day Savings, Natural Gas

$$PDF_{H} = 0.00977$$

 $PD_{H} = ACCF_{H} \times PDF_{H}$

Retrofit Gross Peak Demand Savings, Example

Ceiling insulation in a house is upgraded from R-9 to a total of R-60. The total square feet insulation added is 1,000. The home is heated by electric resistance heating system and has a Central A/C. What are the demand savings?

Using the equation for winter demand savings:

$$WKW = \frac{AKWH_{H,R}}{1,000} \times 0.57$$

From previous example, AKWHH = 308 kWh. Therefore:

$$WKW = \frac{3075}{1,000} \times 0.57 = 1.75 \ kW$$

Using the equation for summer demand savings:

$$SKW_{C,CAC} = CF \times \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times \Delta T_{Summer} \times A \times \frac{1}{EER_B \times 1,000}$$
$$SKW_{C,CAC} = 0.59 \times \left(\frac{1}{7.5} - \frac{1}{58}\right) \times 20.5 \times 1000 \times \frac{1}{11 \times 1,000}$$
$$SKW_{C,CAC} = 0.127kW$$

Changes from Last Version

• Corrected **Ref [2]**, "30-year average."

References

- [1] ASHRAE degree-day correction.1989 ASHRAE Handbook Fundamentals, 28.2, Fig 1.
- [2] Degree Day data from the National Climatic Data Center, Divisional Data, CT state, Jan. 1979 to Dec. 2008, 30-year average.
- [3] Residential Central A/C Regional Evaluation, ADM Associates, Inc., Nov. 2009, a) Table B-4 (Hartford), p. B-9 and b) Figures 4-1 and 2 (Hartford), and pp. 4-15.
- [4] Evaluation of WRAP and Helps Programs, KEMA, 2010, Table ES-8, pp. 1-10.
- [5] Nexant Market Research, Inc., "Market Assessment for ENERGY STAR Room Air Conditioners in Connecticut," Cambridge, MA, 2007, pp. 17-18.
- [6] RLW Analytics, "Final Report: Coincidence Factor Study: Residential Room Air Conditioners," Middletown, CT, 2008, pp. iv and 22.
- [7] ADM Associates, Inc., "Residential Central / Regional Evaluation," Sacramento, CA, 2009, p. 4-4.

Notes

[1] Room A/C cooling savings are derived from factors found in Ref [5], Ref [6], and Ref [7].

4.4.16 FLOOR INSULATION

Description of Measure

Installation of insulation in a floor that separates conditioned space and unconditioned space, including unconditioned basements, unconditioned garages, and crawl spaces).

Savings Methodology

Energy savings are calculated using parallel flow method and typical ceiling structure. The savings are calculated using a degree day analysis and the difference in the pre and post R-values with an adjustment to account for floors over tempered space.

Note: This measure is only applicable to floors over unconditioned spaces where the walls of the unconditioned space are not insulated (*Note* [1]). This measure only has heating savings associated with it.

Inputs

Symbol	Description	Units
R _{pre}	Existing Insulation R-value	ft²hr⁰F/Btu
R _{post}	Insulation R-value after Upgrade	ft²hr⁰F/Btu
А	Total Gross Area of Ceiling Insulation	ft ²
GF	Ground Factor; Percent of Unconditioned Space Walls Above Grade (rounded to	%
	nearest %)	

Table 4- UUUU: Inputs

Nomenclature

Table 4-VVVV: Nomenclature

ATotal Gross Area of Ceiling Insulationft²AKWHAnnual Electric Energy SavingskWhACCF _H Annual Natural Gas Savingsccf/yrAKWHAnnual Electric Energy SavingskWh/yr	
ACCF _H Annual Natural Gas Savings ccf/yr	
AKWH Annual Electric Energy Savings kWh/yr	
AKWH _{H,HP} Annual Electric Savings due to Heat Pump kWh/yr	
Heating	
AKWH _{H,R} Annual Electric Savings due to Electric kWh/yr	
Resistance Heating	
AOG _H Annual Savings for Oil Heat Gal/yr/unit	
APG _H Annual Savings for Propane Heat Gal/yr/unit	
	te [2]
unconditioned Space which is 100% above	
grade (0 % below grade). This includes	
cold (uninsulated or open) crawl spaces	
and cantilever floors	
	te [2]
unconditioned space which is between	
31% and 99% above grade (inclusive) on	
average	
	te [2]
unconditioned space which is between 0%	
and 30% above grade (inclusive) on	
average e.g. a typical below grade	
basement	
	nated
	f [1]
	f [2]
PD _H Peak Day Savings - Heating	
	endix)ne
R _{existing} Effective R-value before Upgrade ft ² hrºF/Btu Calculated	
R _{new} Effective R-value after Upgrade ft ² hrºF/Btu Calculated	
R _{pre} Existing Nominal Insulation R-value ft ² hrºF/Btu Input	
R _{post} Insulation Nominal R-value after Upgrade ft ² hrºF/Btu Input	
WKW Winter Peak Demand Savings kW	
WPF Winter Peak Factor W/kWh 0.57 Ref	f [4]
_{H,R} Electric Resistance Heating	
_{H,HP} Heat Pump Heating	

Retrofit Gross Energy Savings, Electric

$$ABTU_{H} = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times HDD \times 24 \times F_{Adj} \times A \times GF$$

Where:

$$R_{(existing)} = 0.55 \times R_{(pre)} + 3.9$$
$$R_{(new)} = 0.55 \times R_{(post)} + 3.9$$

For electric resistance heating savings:

$$AKWH_{H,R} = \frac{ABTU_{H}}{3,412^{Btu}/_{kWh}}$$

For heat pump:

$$AKWH_{H,HP} = \frac{AKWH_{H,R}}{2}$$

Retrofit Gross Energy Savings, Fossil Fuel

$$ACCF_{H} = \frac{ABTU_{H}}{75\% \times 102,900 \text{ }^{Btu}/_{Cef}}$$
$$APG_{H} = \frac{ABTU_{H}}{75\% \times 91,330 \text{ }^{Btu}/_{Gal}}$$
$$AOG_{H} = \frac{ABTU_{H}}{75\% \times 138,690 \text{ }^{Btu}/_{Gal}}$$

Reminder: System efficiency is 75%.

Retrofit Gross Energy Savings, Example

R-19 insulation is added to the floor over an unconditioned basement in a house. The basement walls are primarily mixed grade. The total square feet insulation added is 1,000 and the floor does not have any existing insulation. The home is heated by electric resistance heating system. What are the annual electric energy savings?

Step 1: Calculate the effective R-values (Rexisting and Rnew):

Determine R(existing):

$$R_{(existing)} = 0.55 \times R_{(pre)} + 3.9$$
$$R_{(existing)} = 0.55 \times 0 + 3.9 = 3.9$$

Determine R(new):

$$R_{(new)} = 0.55 \times R_{(post)} + 3.9$$
$$R_{(new)} = 0.55 \times 19 + 3.9 = 14.35$$

Step 2: Determine the Ground Factor ("GF") and calculate savings:

Since the basement below the floor is primarily mixed grade, the GF = 0.75.

$$ABTU_{H} = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times HDD \times 24 \times F_{Adj} \times A \times GF$$

$$ABTU_{H} = \left(\frac{1}{3.9} - \frac{1}{14.35}\right) \times 5,885 \times 24 \times 0.64 \times 1000 \times 0.75 = 12,658,980.43Btu$$

$$AKWH_{H,R} = \frac{ABTU_{H}}{3,412} \frac{BU_{H}}{BU_{KWh}}$$

$$AKWH_{H,R} = \frac{12,658,980.43}{3,412} = 3,710.1kWh$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

For homes with electric resistance heat:

$$WKW = \frac{AKWH_{H,R}}{1,000} \times WPF$$

$$WKW = \frac{AKWH_{H,R}}{1,000} \times 0.57$$

For homes with a heat pump:

$$WKW = \frac{AKWH_{H,HP}}{1,000} \times 0.57$$

Retrofit Gross Peak Day Savings, Natural Gas

$$PD_{H} = ACCF_{H} \times PDF_{H}$$

Retrofit Gross Peak Demand Savings, Example

R-19 insulation is added to the floor over an unconditioned basement in a house. The basement walls are primarily mixed grade. The total square feet insulation added is 1,000 and the floor does not have any existing insulation. The home is heated by electric resistance heating system. What are the demand savings?

Using the equation for winter demand savings:

$$WKW = \frac{AKWH_{H,R}}{1,000} \times 0.57$$

From previous example, AKWHH,R = 3957.5 kWh. Therefore:

$$WKW = \frac{3710.1}{1,000} \times 0.57 = 2.11kW$$

Changes from Last Version

No changes.

2019 Program Savings Document

References

- [1] ASHRAE degree-day correction.1989 ASHRAE Handbook Fundamentals, 28.2, Fig 1.
- [2] Degree day data from the National Climatic Data Center, Divisional Data, CT state, Jan. 1979 to Dec. 2008, 30-year average. <u>http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp</u>
- [3] Evaluation of WRAP and Helps Programs, KEMA, 2010, Table ES-8, pp. 1-10.

Notes

- [1] This measure applies to all floors over unconditioned space including floors over unconditioned basements, floors over unconditioned garages, floors over crawl spaces, and cantilever floors. These energy savings estimates are based on an analysis assuming that the walls of the unconditioned space are not insulated. A custom energy savings analysis would have to be developed if the walls of that unconditioned space were insulated (even partially).
- [2] Grade Factors were developed using REMrate software.

4.5 WATER HEATING

4.5.3 SHOWERHEAD

Description of Measure

Installation of low flow showerheads meeting the EPA WaterSense specification (2.0 gpm) (**Ref [1]**) to replace Federal Standard (2.5 gpm) or higher flow showerheads.

Savings Methodology

Savings shall be claimed based on the type of fuel used for water heating. Water savings is based on the difference between the Federal Standard (2.5 gpm) versus WaterSense (2.0 gpm).

No electric demand savings are claimed for this measure because there is insufficient peak coincident data.

Inputs

Table 4-3: Inputs

Symbol	Description	
WH Fuel	Water Heater Fuel Type	
n _i	Number of Low Flow Showerheads Installed	
gpm _{installed}	Flow Rate of Installed Showerhead (not required for savings)	

Nomenclature

Table 4-4: Nomenclature

Symbol	Description	Units	Values	Comments
AKWH	Annual Electric Savings for Homes with Electric	kWh/yr	Calculated	
	Water Heater			
ACCF	Annual Natural Gas Savings	ccf/yr	Calculated	
AOG	Annual Oil Savings	gal/yr	Calculated	
APG	Annual Propane Savings	gal/yr	Calculated	
AWG	Annual Water Savings	gal/yr	Calculated	
d _e	Median Duration per Event	minutes	8.3	Ref [4]
dw	Density of Water	lb/ Gal	8.31	
REE	Recovery Efficiency of Electric Water Heater		0.98	Ref [3]
REF	Recovery Efficiency of Fossil Fuel Water Heater		0.78 for SF	Ref [3]
			0.67 for MF	
gpm	Gallons per Minute Flow Rate	gal/min	Fed Std:	Ref [1]
			2.5	
			Water	
			Sense: 2.0	
na	Average Total No. Showerheads per Household		2.3	Ref [4] , p185-186
				Table 66, Note [3]
n _e	Average No. of Shower Events per Day per		1.97	Ref [4] , p144 Table
	Household			41, Note [3]
n _i	Number of Low Flow Showerheads Installed		As found	Note [3]
r _g	Ratio to Adjust Usage for Cooler Climate		0.9344	Note [1], Ref [4]
Sw	Annual Water Savings per Showerhead	gal/yr	Calculated	
SH_W	Specific Heat of Water	BTU/lb-	1	
		₽F		
T _{shower}	Temperature of Water from Shower	۴F	105 °F	
T _{supply}	Temperature of Water into House	۴F	55 °F	
PDF _{WH}	Peak Day Factor, Water Heating		0.00321	Appendix One
РD _{wн}	Peak Day Savings, Water Heating			

Retrofit Gross Energy Savings, Electric

$$S_{W} = n_{e} \times d_{e} \times 365^{\frac{days}{yr}} \times r_{g} \times (gpm_{federalstd} - gpm_{WaterSense})/n_{a}$$

$$S_{W} = 1.97 \text{ events} \times 8.3 \frac{\min_{event}}{365 \frac{days}{yr}} \times 0.9344 \times (2.5 \text{ gpm} - 2.0 \text{ gpm})/2.3$$

 $S_W = 1,212.3 \frac{Gal}{showerhead-yr}$

 $MMBtu \ Savings = \sqrt{n_i} \times (T_{shower} - T_{Supply}) \times d_W \times SH_W \times S_W / 10^6 \ {}_{Btu}/_{MMBtu} \ (See Note [2])$

$$MMBtu \ Savings = \frac{\sqrt{n_i} \times (T_{shower} - T_{supply})}{10^6 \ Btu/_{MMBtu}} \times d_W \times SH_W \times S_W / 10^6 \ Btu/_{MMBtu}$$

$$MMBtu \ Savings = \frac{\sqrt{n_i} \times (105^\circ F - 55^\circ F)}{10^6 \ Btu/_{MMBtu}} \times 8.31^{lb}/_{Gal} \times 1 \times 1,212.3^{Gal}/_{showerhead-yr}$$

MMBtu Savings =
$$0.504 \text{ MMBtu/showerhead} \times \sqrt{n_i}$$

$$AKWH = \frac{MMBtu_Savings}{0.003412 MMBtu/_{kWh} \times RE_e} = \frac{0.504 \times \sqrt{n_i}}{0.003412 \times 0.98}$$
$$AKWH = 151 \frac{kWh}{showerhead} \times \sqrt{n_i}$$

Retrofit Gross Energy Savings, Fossil Fuel

For natural gas:

$$ACCF = \frac{MMBTU \ Savings}{0.1029 \ MMBtu}/_{CCF} \times RE_g} = \frac{0.504 \times \sqrt{n}}{0.1029 \times 0.78}$$
$$ACCF = 6.28 \times \sqrt{n}$$

For oil:

$$AOG = \frac{MMBTU \ Savings}{0.138690 \ MMBtu}/_{Gal - oil} \times RE_g} = \frac{0.504 \times \sqrt{n}}{0.138690 \times 0.78}$$
$$AOG = 4.65 \ gal/_{showerhead} \times \sqrt{n_i}$$

For propane:

$$AOP = \frac{MMBTU \ Savings}{0.09133 \ MMBtu}/Gal - propane \ \times RE_g} = \frac{0.504 \times \sqrt{n}}{0.09133 \times 0.78}$$
$$AOP = 7.07 \ gal/showerhead \ \times \sqrt{n_i}$$

Retrofit Gross Energy Savings, Example

Example 1: Two showerheads are replaced in bathrooms of a home which uses electric hot water heating. What are the savings per household per year?

Annual electric savings:

$$AKWH = 151 \ ^{kWh}/_{showerhead} \times \sqrt{n_i} = 151 \times \sqrt{2} = 213 \ ^{kWh}/_{yr}$$

Annual water savings:

$$AWG = 1,212.3^{\text{Gal}}_{\text{showerhead-yr}} \times \sqrt{n}_i = 1714^{\text{Gallons}}_{\text{yr}}$$

<u>Example 2</u>: Two showerheads are replaced in bathrooms of a home which uses natural gas hot water heating. What are the savings per household per year?

Annual natural gas savings:

$$ACCF = 6.28 \ ^{CCF}/_{showerhead} \times \sqrt{n_i} = 6.28 \times \sqrt{2} = 8.9 \ ^{CCF}/_{yr}$$

Annual water savings:

$$AWG = 1,212.3^{Gal/showerhead-yr} \times \sqrt{n}_i = 1714^{Gallons/yr}$$

Retrofit Gross Peak Day Savings, Natural Gas

$$PD_{WH} = ACCF \times PDF_{WH}$$

Non-Energy Benefits

Annual water savings in gallons:

$$AWG = 1,212.3^{Gal}/_{showerhead-yr} \times \sqrt{n}_i$$

Changes from Last Version

. Input instructions for multi-family (Note [3]).

References

- [1] EPA WaterSense[®] Specification for Showerheads, Version 1.0, effective Feb. 9, 2010. Accessed on Jul. 21, 2010.
- [2] KEMA. Evaluation of the Weatherization Residential Assistance Partnership (WRAP) and Helps Programs, Final Report, Sep. 10, 2010.
- [3] Illinois Statewide Technical Reference Manual for Energy Efficiency, Version 2.0, Created by Illinois Energy Efficiency Stakeholder Advisory Group, Jun. 7, 2013, p. 491.
- [4] Aquacraft Water Engineering & Management. California Single Family Water Use Efficiency Study. Jun. 1, 2011.

Notes

- [1] Ref [4] (Table 35, p. 128) showed water usage for northern sites versus southern sites to have the ratio 171/183 = 0.9344.
- [2] Ref [2] recommends this method of reducing savings for additional water fixtures by multiplying by the square root of the number installed.
- [3] For a multi-family property, n_a, n_{i and} n_e are given per dwelling/unit, then multiply the savings results by the number of unit / dwelling the measure is applied to.

4.5.4 FAUCET AERATOR

Description of Measure

Installation of aerators meeting the EPA WaterSense specification (**Ref [1**]) to replace Federal Standard (2.2 gpm) or higher flow lavatory faucet aerators.

Savings Methodology

Savings shall be claimed based on the type of fuel used for water heating. Water savings is based on the difference between the Federal Standard (2.2 gpm) versus WaterSense (1.5 gpm).

The savings presented here are not applicable for installations where the flow rate does not reduce the total hot water used (i.e., laundry rooms or tubs).

<u>Note:</u> No demand savings are claimed for this measure since there is insufficient peak coincident data.

Inputs

Table 4-5: Inputs

Symbol	Description	
WH Fuel Water Heater Fuel Type		
<i>n</i> Number of Low-Flow Faucet Aerators Installed		
gpm _{installed} Flow Rate of Installed Faucet, (not required for savi		

Nomenclature

Symbol	Description	Units	Values	Comments
AKWH	Annual Electric Savings for Homes with Electric	kWh/yr	Calculated	comments
ARVII	Water Heater		Calculated	
ACCF	Annual Natural Gas Savings	ccf/yr	Calculated	
AOG	Annual Oil Savings	Gal/yr	Calculated	
APG	Annual Propane Savings	Gal/yr	Calculated	
d _e	Average Duration per Event	minutes	0.6167	Ref [4]
dw	Density of Water	lb/ Gal	8.31	iter [i]
DF	Drain Factor	,	0.795	Ref [3]
REE	Recovery Efficiency of Electric Water Heater		0.98	Ref [3]
REG	Recovery Efficiency of Fossil Fuel Water Heater		0.78 for SF	Ref [3]
1120			0.67 for MF	
gpm	Gallons per Minute Flow Rate	gal/min	Fed Std: 2.2	Ref [1]
00		80.7	Water Sense:	[_]
			1.5	
na	Estimated Average Total No. of Faucets (all		5.1	Note [3],
	types) per Household			Note [4],
				Ref [4]
n _e	Median Number of Faucet Events per Day per		42.9	Note [4],
	Household			Ref [4]
ni	No. of Aerators Installed		As found	Note [4]
r _g	Ratio to Adjust Usage for Cooler Climate		0.9344	Note [1],
				Ref [4]
Sw	Annual Water Savings per Faucet	gal/yr	Calculated	
SHW	Specific Heat of Water	Btu/(lb·°F)	1	
T_{faucet}	Temperature of Water from Faucet	۴F	80 °F	
T _{supply}	Temperature of Water into House	۴F	55 °F	
PDF _{WH}	Peak Day Factor, Water Heating		0.00321	Appendix
				One
РD _{wh}	Peak Day Savings, Water Heating			

Table 4- 6: Nomenclature

Retrofit Gross Energy Savings, Electric

$$S_{W} = n_{e} \times d_{e} \times 365 \frac{days}{yr} \times r_{g} \times DF \times (gpm_{federal \ standard} - gpm_{Water \ sense})/n_{d}$$
$$S_{W} = 42.9 \times 0.6167 \times 365 \frac{days}{yr} \times 0.9344 \times 0.795 \times (2.2 \ gpm - 1.5 \ gpm)/5.1$$
$$S_{W} = 985 \frac{Gal}{faucet \ yr}$$

MMBtu Savings = $\sqrt{n} \times (T_{Faucet} - T_{Supply}) \times d_{W} \times SH_{W} \times S_{W} / 10^{6} \text{ }_{Btu}/_{MMBtu}$ (See Note [2])

$$\begin{array}{l} MMBtu \ Savings \\ = \sqrt{n} \times (80^{\circ}\text{F} \\ -55^{\circ}\text{F}) \times 8.31^{\ lb}/_{Gal} \times 1^{\ Btu}/_{lb^{\circ}\text{F}} \times 985^{\ Gal}/_{faucet \ yr}/10^{6} \ ^{Btu}/_{MMbtu} \end{array}$$

$$MMBtu \ Savings = 0.205 \ \frac{MMBtu}{faucet} \times \sqrt{n}$$

$$AKWH = \frac{MMBtu Savings}{0.003412 MMBtu/_{kWh} \times RE_e} = \frac{0.205 \times \sqrt{n}}{0.003412 MMBtu/_{kWh} \times .98}$$
$$AKWH = 61.2 \frac{kWh}{faucet} \times \sqrt{n}$$

Retrofit Gross Energy Savings, Fossil Fuel

Natural gas:

$$ACCF = \frac{MMBtu Savings}{0.102900 \ MMBtu} / Ccf \ \times RE_g} = \frac{0.205 \times \sqrt{n}}{0.102900 \ MMBtu} / Ccf \ \times .78}$$
$$ACCF = 2.55 \times \sqrt{n}$$

Oil:

$$AOG = \frac{MMBtu Savings}{0.138690 MMBtu/Gal oil \times RE_g} = \frac{0.205 \times \sqrt{n}}{0.138690 MMBtu/Gal oil \times .78}$$

$$AOG = 1.89 \times \sqrt{n}$$

Propane:

$$AOP = \frac{MMBtu Savings}{0.09133 \, MMBtu}/_{Gal \ propane} \times RE_g = \frac{0.205 \times \sqrt{n}}{0.09133 \, MMBtu}/_{Gal \ propane} \times .78$$
$$AOP = 2.88 \times \sqrt{n}$$

Retrofit Gross Energy Savings, Example

Example One: Two aerators are replaced in bathrooms of home which uses electric hot water heating. What are the total savings?

$$AKWH = 61.2 \, \frac{kWh}{faucet} \times \sqrt{2} = 87 \, \frac{kWh}{yr}$$

Annual Gal Water Savings = $S_W \times \sqrt{n} = 985 \frac{Gal}{yr} \times \sqrt{2} = 1392 \frac{Gal}{yr}$

Example Two: Two aerators are replaced in bathrooms of a home which uses natural gas hot water heating. What are the savings?

$$ACCF = 2.65 \times 2 = 3.75 \, {^{Ccf}}/_{yr}$$

Annual Gal Water Savings = $S_W \times \sqrt{n} = 985 \frac{Gal}{yr} \times \sqrt{2} = 1392 \frac{Gal}{yr}$

Retrofit Gross Peak Day Savings, Natural Gas

$$PD_{WH} = ACCF \times PDF_{WH}$$

Non-Energy Benefits

Annual Gal Water Savings =
$$S_W \times \sqrt{n} = 985 \frac{Gal}{yr} \times \sqrt{n}$$

Changes from Last Version

No changes.

2019 Program Savings Document

References

- [1] U.S. EPA WaterSense High-Efficiency Lavatory Faucet Specification, Effective Oct. 1, 2007, Accessed Jul. 21, 2010.
- [2] KEMA. Evaluation of the Weatherization Residential Assistance Partnership (WRAP) and Helps Programs, Final Report, Sep. 10, 2010.
- [3] Illinois Statewide Technical Reference Manual for Energy Efficiency, Version 2.0, Created by Illinois Energy Efficiency Stakeholder Advisory Group, Jun. 7, 2013, p. 491.
- [4] Aquacraft Water Engineering & Management. California Single Family Water Use Efficiency Study. Jun. 1, 2011.
- [5] Cadmus Impact Evaluation: Home Energy Services—Income-Eligible and Home Energy Services Programs: Volume 2 (R16), Revised Jul. 2, 2014.

Notes

- [1] Ref [4] (Table 35, p. 128) showed water usage for northern sites versus southern sites to have the ratio 171/183 = 0.9344.
- [2] Ref [2] recommends this method of reducing savings for additional aerators by multiplying by the square root of the number installed.
- [3] Ref [4] gave the number of toilets per household, 2.4 (Table 66, pp. 185-186). Assuming the number of toilets = number of primary lavatory sinks, add one primary faucet for the kitchen, add 1.3+0.4 for number of tub faucets per household, total faucets = 2.4+1+1.7=5.1. Including the tubs/HH in the calculation may understate the lavatory faucet savings since tub use is about 1/10 of the average sink faucet use per year.
- [4] For a multi-family property, n_a, n_{i and} n_e are given per dwelling / unit, then multiply the savings results by the number of unit / dwelling the measure is applied to.

4.5.7 FOSSIL FUEL WATER HEATER

Description of Measure

Installation of a high-efficiency natural gas or propane tankless and storage water heaters.

Savings Methodology

Energy and demand savings calculations for a tankless or storage water heater are shown below. Savings for a high-efficiency indirect water heater and an integrated water heater attached to an ENERGY STAR-rated boiler are shown as Lost Opportunity water heating portion of the high-efficiency boiler (Measure 4.2.17). Many of the inputs for this measure are based on the Tool for Generating Realistic Residential Hot Water Event Schedules (**Ref [1]**). The tool estimates hourly hot water consumption in gallons based on location of home and number of bedrooms. The tool used results from a number of metering studies to develop usage profiles based on location of home and number of bedrooms. These profiles along with incoming water temperature for Connecticut were used to calculate the water heating load for a typical Connecticut home. Assumed water heater efficiencies (energy factors) were used to calculate natural gas and propane savings from the gross energy savings.

Inputs

Table 4-7: Inputs

Symbol	Symbol Description	
	Water Heating Fuel	
EFI	Energy Factor-Installed	%

Nomenclature

Symbol Description Units Values Comments Annual BTU Savings – Water Heating **ABTU**_W Btu ACCF_W Annual Natural Gas Savings – Water Heating ccf Annual Domestic Hot Water Load ADHW Btu 11,197,132 Note [1] APGw Annual Propane Savings – Water Heating Gal Note [2] and Note EF_B Energy Factor - Baseline 0.71 [3] EF_{I} Energy Factor - Installed Note [3] GPY Annual Domestic Hot Water Usage in Gallons Gal 19,839 Note [1] Peak Day Water Heating Savings PD_W ccf PDFw Peak Day Factor Water Heating 0.00321 Average Annual Incoming Water ⁰F 57 Note [1] $\mathsf{T}_{\mathsf{aiw}}$ Temperature T_{dhw} Domestic Hot Water Heater Set Point ₽F 125 Note [1]

Table 4-8: Nomenclature

Lost Opportunity Gross Energy Savings, Fossil Fuel

$$ADHW = GPY \times 8.3^{lbs} /_{Gal} \times (T_{dhw} - T_{aiw})$$

$$ADHW = 19,839 \frac{Gal}{yr} \times 8.3 \frac{bs}{Gal} \times (125^{\circ}F - 57^{\circ}F)$$

ADHW = 11,197,132 *Btu*

$$ABTU_{W} = ADHW \times \left(\frac{1}{EF_{B}} - \frac{1}{EF_{I}}\right)$$
$$ABTU_{W} = 11,197,132Btu \times \left(\frac{1}{0.71} - \frac{1}{EF}\right)$$

Savings by water heating fuel:

$$ACCF_{W} = \frac{ABTU_{W}}{102,900^{Btu}/_{Ccf}}$$

$$APG_W = \frac{ABTU_W}{91,330^{Btu}/_{Gal}}$$

Lost Opportunity Gross Energy Savings, Example

A natural gas water heater with an EF = 82% (0.82) is installed. What are the annual natural gas savings?

$$ABTU_{W} = 11,197,132 Btu \times \left(\frac{1}{.71} - \frac{1}{.82}\right) = 2,115,569 btu$$
$$ACCF_{w} = \frac{2,115569 Btu}{102,900 btu/Ccf} = 20.6 Ccf$$

Lost Opportunity Gross Peak Day Savings, Natural Gas

$$PD_W = ACCF_W \times PDF_W$$

$$PD_W = ACCF_W \times 0.00321$$

Changes from Last Version

No changes.

Notes

- [1] These values were developed using the Tool in Ref [1] for Hartford area weather data and a three-bedroom house.
- [2] Code of Federal Regulations, 10 CFR 430.32(d) as of Mar 7, 2015. Baseline is an average of the 50-gal. storage gas water heater and tankless water heater Energy Factors.
- [3] The Energy Factor ("EF") is defined as the overall energy efficiency of a water heater based on the amount of hot water produced per unit of fuel consumed over a typical day. This includes recovery efficiency, standby losses, and cycling losses (Available at: <u>www.energysavers.gov</u>).

References

[1] Tool for Generating Realistic Residential Hot Water Event Schedules, Preprint, NREL, Aug. 2010.

4.5.8 HEAT PUMP WATER HEATER

Description of Measure

Installation of a heat pump water heater ("HPWH").

Savings Methodology

Energy and demand savings calculations for a HPWH are shown below. The savings are based on R1614/R1613 HVAC and Water Heater Evaluation (**Ref [1**]). The savings in the study represent combination of electric saving and fossil fuel savings.

Inputs

Table 4-9: Inputs

Symbol	Description	Units
	Number of Units Installed	
	Size: 55 gallons or less, or greater than 55	Gallons
	gallons	

Nomenclature

Table 4-10: Nomenclature

Symbol	Description	Units	Comments
AEDHW _W	Annual Electric Energy Savings	kWh/yr	Ref [1]
AFDHW _W	Annual Fossil Fuel Savings	MMBTU/yr	Ref [1]
AOG	Annual Oil Savings	Gals	
APG	Annual Propane Savings	Gals	
SKW	Summer Electric Demand Savings	kW	Ref [1]
WKW	Winter Electric Demand Savings	kW	Ref [1]

For an installed HPWH:

Table 4-11: Gross Energy Savings

Existing DHW Type	AkWh Savings (55 gallons or less)	AkWh Savings (>55 gallons)	AOG Savings	APG Savings
Electric Resistance	1818 kWh	566 kWh		
(Retrofit)				
Unknown (Lost	961 kWh	53 kWh	15.5 Gals	23.54 Gals
Opportunity)				

Table 4 -12: Gross Seasonal Peak Demand Savings (Electric)

Existing DHW Type	SKW (55 gallons or less)	WKW (55 gallons or less)	SKW (> 55 gallons)	WKW (> 55 gallons)
Electric Resistance	0.296 kW	0234 kW	.04 kW	0.036 kW
(Retrofit)				
Unknown (Lost	0.175 kW	0.134 kW	0.014 kW	-0.013 kW
Opportunity)				

Retrofit Gross Energy Savings, Example

An Electric Resistance Water Heater is replaced by a 50 Gallon Heat Pump Water Heater. What are the annual and peak day savings?

 $AEDHW_{W} = 1818 \ kWh$ $SKW = 0.296 \ kW$ $WKW = 0.234 \ kW$

Lost Opportunity Gross Energy Savings, Example

A 50 Gallon HPWH was sold through an upstream distributor. What are the annual and peak day savings? Since the unit was sold upstream the lost opportunity savings are combination of electric savings and fossil fuel savings.

For electric Savings:

 $AEDHW_{W} = 961 \, kWh$ $SKW = 0.175 \, kW$ $WKW = 0.133 \, kW$

For oil savings:

$$AFDHW_W = 16.6Gal$$

For propane savings:

$$AFDHW_W = 21.3Gal$$

Changes from Last Version

- Added in Retrofit electric savings.
- Updated savings based on new HVAC evaluation.

References

[1] R1614/R1613 CT HVAC and Water Heater Process and Impact Evaluation , West Hill Energy and Computing, EMI Consulting & Lexicon Energy Consulting, Jul. 19, 2018. pp. 8.6-8.8.

4.5.9 PIPE INSULATION

Description of Measure

Installation of insulation on domestic hot water ("DHW") pipes and or heating pipes in unconditioned basements to reduce heat loss.

Savings Methodology

Annual savings for DHW pipes estimated based on pipe size in table below. The savings values are per foot of hot pipe coming from the water heater in unconditioned space and are based on the outputs of **Ref [1]**, based on the inputs listed in **Note [1]**, also recommended in **Ref [2]**. The savings should be limited to the first 6 linear feet of installed pipe insulation per water heater **Ref [4]**.

Inputs

Symbol	Description
Pipe Diameter	Pipe Diameter, Inches (savings are shown for $\frac{1}{2}$ " and $\frac{3}{4}$ " pipes for domestic hot water,
	savings are shown for $3/4", 1", 1 \frac{1}{2}"$ and $2"$ pipes used for heating)
L	Length of pipe insulation, in feet.
	DHW Fuel Type (e.g., electric resistance, natural gas oil, and propane)
	Heating Fuel Type (e.g., natural gas, oil, and propane)

Table 4-13: Inputs

Nomenclature

Table 4-14: Nomenclature

Symbol	Description	Units	Values	Comments
ACCF _H	Annual Natural Gas Savings per Linear Foot, Heating	ccf/ft		Table 4-18
ACCFw	Annual Natural Gas Savings per Linear Foot, DHW			Table 4-17
AKW _H	Annual kWh Energy Savings Coefficient, Heating	kWh/ft		Table 4-16
AKW _w	Annual kWh Energy Savings Coefficient, DHW	kWh/ft		Table 4-15
AKWH _H	Annual Energy Savings, Heating	kWh	Calculated	
AKWHw	Annual Energy Savings, DHW	kWh	Calculated	
AOG _H	Annual Oil Savings, Heating	Gal/ft		Table 4-18
AOG _W	Annual Oil Savings, DHW	Gal/ft		Table 4-17
APG _H	Annual Propane Savings, Heating	Gal/ft		Table 4-18
APGw	APG _W Annual Propane Savings, DHW			Table 4-17
PDw	Peak Day Savings, DHW			
PDF _H	Peak Day Factor, Heating		0.00977	Appendix One
PDFw	Peak Day Factor, DHW		0.00321	Appendix One
PFs	Summer Seasonal Peak Factor	W/kWh	0.1147	Ref [3]
PFw	Winter Seasonal Peak Factor	W/kWh	0.1747	Ref [3]
SKW _H	Summer Seasonal Peak Demand Savings Heating	kW		
SKWw	Summer Seasonal Peak Demand Savings, DHW	kW		
WKW _H	Winter Seasonal Peak Demand Savings Heating	kW		
WKWw	Winter Seasonal Peak Demand Savings, DHW	kW		

Retrofit Gross Energy Savings, Electric

Table 4-15: Annual Electrical Savings per Linear Foot of Domestic Hot Water Pipe Insulation

Pipe Diameter (inches)	AKW _w (kWh/ft)
0.50	14.1
0.75	20.5

Annual electric DHW savings can be calculated using the formula below, and using the values for AKWW from Table 4-14:

$$AKWH_W = AKW_W \times L$$

Pipe Diameter (inches)	AKW _H (kWh/ft)
0.75	12.9
1.00	16.0
1.25	19.6
1.50	22.2

Table 4-16: Annual Electrical Savings per Linear Foot of Heating Pipe Insulation

Annual electric heating savings can be calculated using the formula below, and using the value for AKWH from Table 4-15:

$$AKWH_{H} = AKW_{H} \times L$$

Retrofit Gross Energy Savings, Fossil Fuel

Table 4-17: Annual Fossil Fuel Savings per Linear Foot of Domestic Hot Water Pipe Insulation

Pipe Diameter (inches)	ACCF _w (Ccf/ft)	AOG _w (Gallons/ft)	APG _w (Gallons/ft)
0.50	0.75	0.63	0.82
0.75	1.10	0.91	1.20

Annual natural gas DHW savings can be calculated using the formula below and using the ACCFw coefficient in Table 4-16.

$$ACCF = ACCF_W \times L$$

Annual oil DHW savings can be calculated using the formula below and using the AOGw coefficient in Table 4-16.

$$AOG = AOG_W \times L$$

Annual propane DHW savings can be calculated using the formula below and using the APGw coefficient in Table 4-16:

$$APG = APG_{W} \times L$$

Table 4-18: Annual Fossil Fuel Savings per Linear Foot of Heating Pipe Insulation

Pipe Diameter (inches)	ACCF _H (Ccf/ft)	AOG _H (Gallons/ft)	APG _н (Gallons/ft)
0.75	0.5	0.4	0.6
1.00	0.6	0.5	0.7
1.25	0.8	0.6	0.9
1.50	0.9	0.7	1.0

Annual natural gas heating savings can be calculated using the formula below and using the ACCFH coefficient in Table 4-17:

$$ACCF = ACCF_H \times L$$

Annual oil heating savings can be calculated using the formula below and using the AOGH coefficient in Table 4-17:

$$AOG = AOG_H \times L$$

Annual propane DHW savings can be calculated using the formula below and using the APGH coefficient in Table 4-17:

$$APG = APG_H \times L$$

Retrofit Gross Energy Savings, Example

Five feet of pipe insulation are installed on a χ'' diameter hot water pipe. The home has oil hot water heating. What are the annual energy savings?

$$AOG = AOG_{H} \times L$$
$$AOG = 0.63 \frac{Gal}{ft} \times 5 \ ft = 3.15 \frac{Gal}{yr}$$

Retrofit Gross Seasonal Peak Demand Savings, Electric (winter and summer)

For DHW, the summer seasonal peak demand savings is:

$$SKW_W = \left(\frac{AKWH \times PF_s}{1000}\right)$$

For DHW, the winter seasonal peak demand savings is:

$$WKW_{W} = \left(\frac{AKWH \times PF_{S}}{1000}\right)$$

For heating, summer seasonal peak demand:

$$SKW_{H} = 0$$
$$WKW_{H} = \left(\frac{AKWH \times 0.57}{1000}\right)$$

Retrofit Gross Peak Day Savings, Natural Gas

For DHW:

$$PD_W = ACCF \times PDF_W$$

For heating:

$$PD_{H} = ACCF \times PDF_{H}$$

Retrofit Gross Peak Demand Savings, Example

5 feet of pipe insulation are installed on a $\frac{1}{2}$ " diameter hot water pipe. The home has electric hot water heating. What are the summer and winter peak demand savings?

$$AKWH = 5 feet \times 14.1 \frac{kWh}{ft \cdot yr} = 70.5 \frac{kWh}{yr}$$
$$SKW = \frac{\left(70.5 \frac{kWh \times 0.1147 \frac{W}{kWh}}{1000 \frac{W}{kW}}\right)}{1000 \frac{W}{kW}} = 0.0081 \frac{kW}{kW}$$
$$WKW = \frac{\left(70.5 \frac{kWh \times 0.1747 \frac{W}{kWh}}{1000 \frac{W}{kW}}\right)}{1000 \frac{W}{kW}} = 0.012 \frac{kW}{kW}$$

Changes from Last Version

No changes.

References

- [1] NAIMA, 3E Plus software tool, Version 4.1, Released 2012.
- [2] Nexant. Home Energy Solutions Evaluation: Final Report, submitted to Connecticut Energy Efficiency Board. Mar. 2011.
- [3] KEMA. Evaluation of the Weatherization Residential Assistance Partnership (WRAP) and Helps Programs, Final Report, Sep. 10, 2010.
- [4] Cadmus Impact Evaluation: DRAFT -Home Energy Services—Income-Eligible and Home Energy Services Programs: Volume 2 (R16), Jun. 2, 2014.

Notes

[1] 3E Plus Inputs for DHW.

- [2] Polyolefin (Polyethylene) Foam Tube insulation, 3/8" Thk for 1/2" pipe, 1/2" Thk for 3/4" pipe.
- [3] No Jacket installed, so assume emittance (emissivity) of "jacket" is 1.0 (maximum).
- [4] Ambient Temp range 40-70 deg F, no wind speed (used 60 typical).
- [5] Process Temp (water heater temp) 90 deg F to reflect average temperatures (normal range of WH setting is 120-140; 120 for energy savings, 140 carries risk of scalding).
- [6] TuBINg is copper.
- [7] Savings counted 8760 hours/yr since average temperature is used.
- [8] Heat in pipes will dissipate during the time hot water is not being used, thus reducing the average water temperature in the pipe.
- [9] Only 0.5 and 0.75-inch pipe necessary, since most HW supply pipes are either 1/2 or 3/4 in.
- [10] 3E Plus software v4.01 (2012) from NAIMA used to calculate heat loss.
- [11] Temp difference between ambient temperatures and pipe temperatures: 30 correlates with 90 F pipe and 60 F ambient.
- [12] Efficiency of water heaters same as that used for faucet aerators and showerheads, see 13.
- [13] Horizontal pipes.
- [14] WH efficiencies: Electric: 90%, Oil: 49.5%, Natural gas and Propane: 57.5%.

4.5.10 SOLAR WATER HEATER

Description of Measure

Installation of solar water heater, to displace residential hot water load.

Savings Methodology

Savings for systems would be provided by contractors and would be calculated using Solar Pathfinder solar thermal tool (Available at: <u>www.solarpathfinder.com/</u>) or equivalent software. The energy savings calculations must be based on the SRCC "C" Mildly Cloudy Day rating, the number of occupants in the home, the size/number of storage tanks, and the efficiency of the back-up system. If feasible, savings should be calibrated to actual billing data.

Inputs

Table 4-19: Inputs

Symbol	Description
SPF	Solar Path Finder Software used to Estimate the Savings, Note [1]

Lost Opportunity Gross Energy Savings, Electric

Based on the Solar Path Finder ("SPF") report.

Lost Opportunity Gross Energy Savings, Electric

Based on the SPF report.

Lost Opportunity Gross Seasonal Peak Demand Savings, Electric (winter and summer)

Based on the SPF report.

Lost Opportunity Gross Peak Day Savings, Natural Gas

Based on the SPF report.

Non-Energy Benefits

Increases a home's value.

Changes from Last Version

No changes.

Notes

[1] Solar Pathfinder is a residential energy analysis. This software calculates, hot water load, and energy savings using the site/array characteristics, shading factor, tank capacity and type. This software is widely used in sizing and estimating the savings from solar water heater.

4.6 OTHER

4.6.1 RESIDENTIAL CUSTOM

Description of Measure

This measure may apply to any project whose scope may be considered custom or comprehensive. Applicable measures may include the replacement of an inefficient HVAC system (or component) such as a fossil fuel furnace, boiler, heat pump, air conditioner, Home Performance with ENERGY STAR project measures, or any other project where interactive effects between two or more measures are present.

Savings Methodology

These custom measures can be evaluated using either the appropriate measure, if found in this document, or other acceptable modeling tools such as DOE-2, Elite, PRISM, REM/Rate, or engineering spreadsheets (**Notes [1], [2]** and **[3]**). Custom measures should use site-specific information when available (i.e. existing conditions, etc.). The analysis of the site-specific measures will be reviewed for reasonableness by a qualified internal program administrator or independent third party engineer. Whenever possible, site utility billing history must be utilized as appropriate.

When a measure meets the requirements for early retirement (existing equipment is in good working order), use the partial savings methodology outline for that measure (or similar measure) outlined in this document. For an early retirement measure the savings may need to be calculated in two parts, as follows:

- 1. Retrofit savings based on the early retirement of a working existing unit; and
- 2. Lost Opportunity savings for installing a new efficient unit for the life of the measure

In case where interactive effects between two or more measures are present, a comprehensive analysis must be conducted and fully documented, with assumptions and methodology clearly indicated.

Changes from Last Version

No changes.

Notes

[1] REM/Rate[™] is a residential energy analysis, code compliance and rating software developed by Architectural Energy Corporation. This software calculates heating, cooling, hot water, lighting,

and appliance energy loads, consumption and costs for new and existing single and multi-family homes.

- [2] PRISM is an established statistical procedure for measuring energy conservation in residential housing. The PRISM software package was developed by the Center for Energy and Environmental Studies, Princeton University. The tool is used for estimating energy savings from billing data. Available at: <u>http://www.princeton.edu/~marean/</u>.
- [3] DOE-2 is a widely used and accepted building energy analysis program that can predict the energy use and cost for all types of buildings. DOE-2 uses a description of the building layout, constructions, operating schedules, conditioning systems (such as lighting & HVAC) and utility rates provided by the user, along with weather data, to perform an hourly simulation of the building and to estimate utility bills. Available at: http://www.doe2.com/.

4.6.2 BEHAVIORAL CHANGE

Description of Measure

This measure covers enrollment in a residential behavioral program or installation of a measure with a behavioral change component that is designed to encourage lower energy usage through behavioral messaging. These behavioral messages can be periodic normative reports or messages that present the customers with timely information on their energy usage and a call to action to reduce or save energy. Behavioral messages can be delivered through many avenues, including paper, email, and text messages.

Savings Methodology

Because the characteristics of behavioral programs make them amenable to robust, unbiased evaluation through randomized, controlled trials, and because Connecticut is expected to regularly evaluate its behavioral energy efficiency programs, use of evaluated savings estimates is recommended.

Evaluations should be conducted, and savings calculated in accordance with the Department of Energy's SEE Action Recommendations, including but not limited to the use of a randomized controlled trial and a panel data model¹.

Savings are estimated by the difference between usage with the behavioral program and usage without the behavioral program. Usage without the behavioral program can be estimated by dividing adjusting actual usage by an adjustment factor based on the treatment effect to back out the effect of the program, or by application of a deemed savings value based on evaluation.

Inputs

Table 4-20: Inputs

Symbol	Description	Comments
Usage Electric	Annual Electric Energy Consumption	
Usage Gas	Annual Electric Energy Consumption	

Nomenclature

Table 4-21: Inputs

Symbol	Description	Units	Comments
AKWH-H	Annual Electric Energy Savings Heating		
AKWH-C	Annual Electric Energy Savings Cooling	kWh	
ACCF	Annual Natural Gas Savings		
ATE	Average Treatment Effect		Input
Usage Electric	Electric Annual Electric Consumption		Input
Usage Gas	Annual Gas Consumption	ccf	Input

UIL HERs program is introducing new customers over the three years; the methodology captures both savings from first year customers as well as incremental savings from repeat customers. It aligns savings and costs by plan year. It models a first year customer and the savings and attrition expected if they did not continue to receive reports. It then modeled this same customer in the second year with a percentage increase to the savings (to reflect continued participation) and the same attrition values.

The first year customer has the first year's savings as the annual savings, and the sum of the declining savings as the lifetime savings. The measure life is calculated by dividing the lifetime savings by the annual savings².

The second year the same customer receives the report the first year savings are the incremental savings between the upward adjusted savings percentage, and the second year savings counted in the Lifetime savings in the first year. As the program matures and additional evaluations become available this methodology may be refined.

Assumptions							
	Yr 1	Yr 2	Yr 3	Yr 4	Yr 5		
Persistance	1	0.71	0.4	0.3	0.1		
Percent savings	Electric	Natural Gas ³					
	1.17%	0.60%	1st year				
	1.35	1.35	Second year	ar adjustme	ent for exte	nsion custo	omers
	1.58%	0.81%	Maximum	Percent Sa	vings		

Table 4-22: Savings and Persistence Assumptions for UIL's HERs Program

Changes from Last Version

No changes.

References

- [1] Department of Energy, SEE Action, "Evaluation, Measurement, and Verification (EM&V) of Residential Behavior-Based Energy Efficiency Programs: Issues and Recommendations". May 2012, p. xi.
- [2] Evaluation of the Year 2 CL&P Pilot Customer Behavior Program (R2) Aug. 2014.
- [3] Evaluation of PG&E HER Program 2013, p. 29, Freeman, Sullivan & Co.

This page intentionally blank.

APPENDIX ONE: PEAK FACTORS

Coincidence Factors for ISO-NE Seasonal Peak Demand Reductions

	Ligh	ting	Occupan	cy Sensors	
Facility Type	Summer Winter		Summer	Winter	
Grocery	90.4% <mark>(d,1)</mark>	77.0% <mark>(d,2)</mark>	14.7% <mark>(d,3)</mark>	13.3% <mark>(d,4)</mark>	
Manufacturing	67.1% <mark>(d,1)</mark>	43.2% (d,2)	19.8% <mark>(d,3)</mark>	17.2% <mark>(d,4)</mark>	
Medical (Hospital)	74.0% <mark>(d,1)</mark>	61.8% <mark>(d,2)</mark>	23.9% <mark>(d,3)</mark>	22.1% <mark>(d,4)</mark>	
Multifamily Common Area	17.0% <mark>(k)</mark>	100.0% <mark>(k)</mark>	18.0% <mark>(m)</mark>	12.0% <mark>(m)</mark>	
Office	70.2% <mark>(d,1)</mark>	53.9% <mark>(d,2)</mark>	27.4% <mark>(d,3)</mark>	29.6% <mark>(d,4)</mark>	
Other	47.6% <mark>(d,1)</mark>	42.8% <mark>(d,2)</mark>	2.4% (<mark>d,3)</mark>	6.6% <mark>(d,4)</mark>	
Restaurant	77.5% <mark>(d,1)</mark>	64.4% <mark>(d,2)</mark>	14.7% <mark>(d,3)</mark>	13.3% <mark>(d,4)</mark>	
Retail	79.5% <mark>(d,1)</mark>	64.7% <mark>(d,2)</mark>	14.7% <mark>(d,3)</mark>	13.3% <mark>(d,4)</mark>	
University/College	65.0% <mark>(d,1)</mark>	52.8% <mark>(d,2)</mark>	28.3% <mark>(d,3)</mark>	23.1% <mark>(d,4)</mark>	
Warehouse	72.7% (d,1)	53.5% (d,2)	24.6% (<mark>d,3)</mark>	18.3% <mark>(d,4)</mark>	
School	59.9% <mark>(d,1)</mark>	38.8% (d,2)	20.9% <mark>(d,3)</mark>	15.9% <mark>(d,4)</mark>	
Parking Lot/Street Lighting	1.5% <mark>(g)</mark>	66.9% <mark>(g)</mark>			

Table A1-A: Commercial & Industrial Lighting and Occupancy Sensors

Table A1-B: Other Commercial & Industrial Measures

Other Commercial and Industrial Measures									
Measure Summer Winter									
Unitary A/C	82.0% <mark>(c)</mark>	0.0% <mark>(c)</mark>							
Efficient Motors (cooling)	73.0% <mark>(c)</mark>	60.0% <mark>(c)</mark>							
Efficient Motors (heating)	0.0% <mark>(c)</mark>	80.0% <mark>(c)</mark>							
Refrigeration Controls	100% <mark>(f)</mark>	100% <mark>(f)</mark>							
Air Compressors	77.0% <mark>(h)</mark>	54.0% <mark>(h)</mark>							

Residential		
Measure	Summer	Winter
Lighting	13.0% <mark>(i)</mark>	20.0% <mark>(i)</mark>
Primary Refrigerator	89% <mark>(j)</mark>	63% <mark>(j)</mark>
Secondary Refrigerator	93% <mark>(j)</mark>	49% <mark>(j)</mark>
Freezer	93% <mark>(j)</mark>	65% <mark>(j)</mark>
Dishwasher	32% <mark>(j)</mark>	58% <mark>(j)</mark>
Clothes Washer	52% <mark>(j)</mark>	50% <mark>(j)</mark>
Clothes Dryer - Electric	46% <mark>(j)</mark>	58% <mark>(j)</mark>
Clothes Dryer - Natural Gas	40% <mark>(j)</mark>	54% <mark>(j)</mark>
Water Heater - Electric	38% <mark>(j)</mark>	79% <mark>(j)</mark>
Water Heater - Heat Pump	46% <mark>(j)</mark>	74% <mark>(j)</mark>
Water Heater - Natural Gas/Fuel Oil	22% <mark>(j)</mark>	42% <mark>(j)</mark>
Dehumidifier	87% <mark>(j)</mark>	11% <mark>(j)</mark>
Pool Pump	63% <mark>(j)</mark>	0% <mark>(j)</mark>
Primary TV and Peripherals	62% <mark>(j)</mark>	87% <mark>(j)</mark>
Primary Desktop Computer	87% <mark>(j)</mark>	85% <mark>(j)</mark>
Central Air Conditioner/Heat Pump (Cooling)	74% <mark>(j)</mark>	0% <mark>(j)</mark>
Mini-Split Air Conditioner/Heat Pump (Cooling)	67% <mark>(j)</mark>	0% <mark>(j)</mark>
Room or Window Air Conditioner	73% <mark>(j)</mark>	0% <mark>(j)</mark>
Furnace Fan	0% <mark>(j)</mark>	58% <mark>(j)</mark>
Boiler Distribution	0% <mark>(j)</mark>	66% <mark>(j)</mark>
Mini-Split Heat Pump (Heating)	0% <mark>(j)</mark>	74% <mark>(j)</mark>
Hardwired Electric Heat	0% <mark>(j)</mark>	60% <mark>(j)</mark>

Table A1-C: Residential Measures

Calculating Peak Day Savings for Natural Gas Measures

Natural gas peak day usage is driven by the heating load; thus, peak day savings is the savings associated with conservation measures that takes place during the coldest continuous 24 hour period of the year.

The methodology for peak day savings estimating for natural gas efficiency measures is summarized on the next page:

 Residential Space Heating Efficiency Upgrades: Since energy savings correlate directly to outside air temperatures, the demand savings for residential space heating measures is estimated based on as a percentage (0.977%) of annual savings. The 0.977% factor is based on Bradley Airport peak degree day thirty-year average (58.5) divided by the thirty-year average heating degree days (5,990).

Peak Day Savings (residential heating) = 0.00977 × *Annual Heating Savings*

2) Residential Natural Gas Water Heating: The peak day savings are estimated by estimating the percent of hot water consumption during the peak day. This is done by multiplying the annual savings associate with a hot water measure by 0.321%. This factor is based on water heating load and inlet temperatures from the NREL tool in Ref [I]. For Hartford, the coldest inlet water temperature was 45.96 degrees and average is 56.72 degrees. Assumed hot water set point is 120 degrees. Therefore:

$$Peak \ Factor = \frac{(1 \ day) \times (120 \ ^\circ F - 45.96 \ ^\circ F)}{(365 \ days) \times (120 \ ^\circ F - 56.72 \ ^\circ F)} = 0.00321$$

$$Peak \ Day \ Savings \ (residential \ water) = 0.00321 \times Annual \ Water \ Heating \ Savings$$

3) Measures with Daily Constant Savings: An example would be a process heating measure. For these measures, the peak day savings will be estimated by dividing the annual savings by 365 days per year.

$$Peak Day Savings = \frac{Annual Savings}{365 days per year}$$

4) Custom Measures: Measures that are not weather dependent, nor have consistent savings from day-to-day or are analyzed with a more detailed analysis tool such as the hourly DOE-2 program, will be analyzed on a case-by-case basis. For example, a complex boiler replacement or controls measure might be modeled using DOE-2. In this case, hourly building simulations can calculate the savings for the peak day based on ("TMY") data used in the program. These measures are typically analyzed by a third-party consultant and reviewed for reasonableness.

Changes from Last Version

- Updated residential non-lighting coincidence factors based on MA research.
- Updated multifamily common area coincidence factors.

References

- [a] KEMA, C&I Lighting Load Shape Project. FINAL Report, Jul. 2011.
- [b] ADM Associates, Inc., Residential Central A/C Regional Evaluation: Final Report, Nov. 2009, Table 4-17, CT weighted average. Winter seasonal peak CF is assumed to be zero.
- [c] RLW, Final Report, 2005 Coincidence Factor Study, Jan. 4, 2007, Table 5.
- [d] RLW, Coincidence Factor Study Residential and Commercial Industrial Lighting Measures, Spring 2007.
- [d, 1] p. VIII, Table i-11.
- [d, 2] p. IX, Table i-12.
- [d, 3] p. XII, Table i-17.

- [d, 4] p. XII, Table i-18.
 - [e] Coincidence Factor Study, Residential Room Air Conditioners, Prepared by RLW, Dec. 2007, Table 22, Hartford, CT seasonal CF. Winter seasonal peak CF is assumed to be zero.
 - [f] Coincidence factors set to 1.00 since gross kW savings is the average kW reduction, rather than the instantaneous kW reduction when operating. MA TRM for 2016 to 2018 program years, Oct. 2015; RI TRM for 2016 program year, Oct. 2015. Also see PSD section 4.3.7 for residential refrigerators.
 - [g] United Illuminating analysis performed using historical seasonal peak hours (2010-2014).
 - [h] MA TRM for 2013 to 2015 program years, Oct. 2012.
 - [i] NMR Group Inc., Northeast Residential Lighting Hour-of Use Study, May 5, 2014, Table ES-7, page XVIII.
 - [j] Navigant, RES1 Demand Impact Model Update, August 2018.
 - [k] Estimated using the demand allocation methodology described in Cadmus Demand Impact Model (2012). Prepared for the Massachusetts Program Administrators. Summer heating coincidence is assumed to be 0%.
 - [I] NREL Tool for Generating Realistic Residential Hot Water Event Schedules, Preprint, Aug. 2010.
 - [m] The Cadmus Group, Inc. (2012). Final Report, Small Business Direct Install Program: Pre/Post Occupancy Sensor Study.

APPENDIX TWO: LOAD SHAPES

Load Shapes by End Use and Sector

Load Shape	Winter Peak Energy %	Winter Off-Peak Energy %	Summer Peak Energy %	Summer Off-Peak Energy %
End Use			Residential	
Cooling (Ref [a])	0.0%	0.0%	74.4%	25.6%
Heating (Ref [a])	38.5%	58.7%	0.6%	2.2%
Lighting (Ref [a])	42.1%	32.5%	13.9%	11.5%
Refrigeration (Ref [a])	39.1%	28.0%	19.0%	13.9%
Water Heating (Ref [a])	37.2%	33.9%	14.6%	14.3%
Residential (General) (Ref [i])	30.3%	36.3%	15.5%	17.9%
Comr	nercial &	Industrial		
Cooling (large C&I) (Note [1])	17.0%	12.0%	42.0%	29.0%
Cooling (small C&I) (Note [2])	20.0%	12.0%	40.0%	28.0%
Heating (Note [3])	55.0%	27.0%	12.0%	6.0%
Lighting (large C&I)(Ref [b], Ref [h])	44.5%	19.4%	25.7%	10.5%
Lighting (small C&I)(Ref [b], Ref [h])	38.3%	25.1%	22.5%	14.1%
Refrigeration (Note [4])	30.0%	37.0%	15.0%	18.0%
Other (Note [5])	37.0%	29.0%	19.0%	15.0%
Motors (Note [6])	51.0%	16.0%	25.1%	7.9%
Process (Note [7])	32.0%	36.0%	16.0%	16.0%

Table A2-1: Load Shapes by End Use and Sector

Notes

- Winter is defined as October May.
- Summer is defined as June September.
- Peak is defined as 7:00 AM -11:00 PM weekdays (no holidays).
- Off-peak is defined 11:00 PM- 7:00 AM, plus all weekend and holiday hours.

Changes from Last Version

- Changed reference numbers to letters for clarity.
- Rounded to the nearest tenth of a percent to more accurately reflect precision.

References

- [1] DOE, Office of Energy Efficiency & Renewable Energy ("EERE") Commercial and Residential Hourly Load Profiles for Hartford, CT, updated Jul. 2013. Based on the NREL Building America House Simulation Protocols and EIA Residential Energy Consumption Survey.
- [2] Northeast Energy Efficiency Partnerships (NEEP) Load Shape Catalog, prepared for the NEEP Regional EM&V Forum by DNVGL. Last Updated Jul. 19, 2016.
- [3] Commercial Refrigeration Load Shape Project, prepared for the NEEP Regional EM&V Forum by Cadmus, Oct. 9, 2015.
- [4] C&I Unitary HVAC Load Shape Project Final Report, prepared for the NEEP Regional EM&V Forum by KEMA, Aug. 2, 2011.
- [5] New Hampshire Utilities Large C& Retrofit and New Equipment & Construction Program Impact Evaluation, DNV-GL, Sep. 25, 2015.
- [6] Variable Speed Drive Load Shape Project, prepared for the NEEP Regional EM&V Forum by Cadmus, Aug. 15, 2014.
- [7] New Hampshire Small Business Energy Solutions Program Impact and Process, prepared by KEMA, Jun. 27, 2012.
- [8] C&I Lighting Load Shape Project, prepared for the NEEP Regional EM&V Forum by KEMA, Jul. 19, 2011.
- [9] Percent of annual hours in each season.

Notes

- [1] Small C&I Efficient Unitary HVAC load shape, cooling data only (Ref [b], Ref [d]).
- [2] Small C&I Efficient Unitary HVAC load shape, cooling data only (summer peak +1 to sum to 100) (Ref [b], Ref [d]).
- [3] VFD Hot Water Pump load shapes—best available option in NEEP Load Shape data (larger sample size, closely related to heating) (Ref [b], Ref [f]).
- [4] Load shape based on profile for electronically commutated motors installed on evaporator fans in coolers, as this measure had the largest savings and largest sample size of those studied (Ref [b], Ref [c]).
- [5] NH Small Business Energy Solutions study, all equipment (Ref [b], Ref [g]).
- [6] Averaged supply fans and return fans VSD load shapes (Ref [b], Ref [f]).
- [7] NH-based study, Large C&I (winter peak-1 to sum to 100) (Ref [b], Ref [e]).

APPENDIX THREE: REALIZATION RATES

Commercial & Industrial Electric Realization Rates

	Gross Realiz	ation %		FR 8	k SO	Net Re	ealization % (N	lote 1)
End-use	kWh	Winter Seasonal Peak kW	Summer Seasonal kW	Free- ridership	Spillover	kWh	Winter Seasonal Peak kW	Summer Seasonal Peak kW
		Er	nergy Consciou	Is Blueprint (N	Note 7)			
Cooling	87.1% <mark>(a)</mark>	108.0% <mark>(a)</mark>	66.0% <mark>(</mark> a)	29.5% <mark>(d,1)</mark>	12.4% <mark>(d,1)</mark>	72.24%	89.5%	54.7%
Custom	86.0% <mark>(a)</mark>	91.0% <mark>(a)</mark>	87.0% <mark>(a)</mark>	22.5% _(d,1)	16.9% _(d,1)	81.18%	85.9%	82.1%
Heating	85.0% _(a)	108.0% _(a)	66.0% <mark>(</mark> a)	23.7% _(d,1)	28.0% <mark>(d,1)</mark>	88.65%	112.6%	68.8%
Lighting	116.0%(a)	113.0%(a)	121.0%(a)	16.7% <mark>(d,1)</mark>	2.4%(d,1)	99.41%	96.8%	103.7%
Motors	86.0% <mark>(</mark> a)	91.0% <mark>(a)</mark>	87.0% <mark>(</mark> a)	18.2% <mark>(d,1)</mark>	7.1%(d,1)	76.45%	80.9%	77.3%
Other	86.0% _(a)	45.0% _(a)	45.0% _(a)	18.2% _(d,1)	7.1% <mark>((</mark> d,1)	76.45%	40.0%	40.0%
Process	69.3% _(a)	81.9% _(a)	78.7% _(a)	17.6% <mark>(d,1)</mark>	0.9% <mark>(d,1)</mark>	57.69%	68.2%	65.6%
Refrigeration	86.0%(a)	91.0% _(a)	87.0% <mark>(</mark> a)	3.6%(d,1)	25.9%(d,1)	105.18%	111.3%	106.4%
			Energy O	pportunities				
Cooling	101.0%(b,1)	160.0%(b,3)	116.0%(b,2)	20.0% _(d,1)	0.0%(d,1)	80.8%	128.0%	92.8%
Custom	101.0%(b,1)	160.0%(b,3)	116.0% <mark>(b,2)</mark>	25.9% <mark>(d,1)</mark>	1.8%(d,1)	76.7%	121.4%	88.0%
Heating	101.0%(b,1)	160.0% <mark>(b,3)</mark>	116.0% <mark>(b,2)</mark>	14.8% <mark>(d,1)</mark>	0.0% <mark>(d,1)</mark>	86.1%	136.3%	98.8%
Lighting	101.0%(b,1)	160.0%(b,3)	116.0% <mark>(b,2)</mark>	10.8% <mark>(d,1)</mark>	6.3% <mark>(d,1)</mark>	96.5%	152.8%	110.8%
Motors	101.0%(b,1)	160.0% <mark>(b,3)</mark>	116.0% <mark>(b,2)</mark>	11.5% <mark>(d,1)</mark>	4.5% _(d,1)	93.9%	148.8%	107.9%
Other	101.0%(b,1)	160.0%(b,3)	116.0%(b,2)	2.6%(d,1)	0.0%(d,1)	98.4%	155.8%	113.0%
Process	101.0%(b,1)	160.0%(b,3)	116.0%(b,2)	6.9% _(d,1)	3.7% _(d,1)	97.8%	154.9%	112.3%
Refrigeration	101.0%(b,1)	160.0%(b,3)	116.0% _(b,2)	3.2% _(d,1)	0.0% _(d,1)	97.8%	154.9%	112.3%

Table A3-1: Commercial & Industrial Electric Realization Rates

	Gross Real	ization %		FR &	SO	Net Realization % (Note 1)						
End-use	kWh	Winter Seasonal Peak kW	easonal Seasonal		Spillover	kWh	Winter Seasonal Peak kW	Summer Seasonal Peak kW				
	Small Business Energy Advantage											
Cooling	72% _(c,1)	73% _(c,1)	85% _(c,1)	15.3% _(d,1)	0.2% _(d,1)	61.1%	62.0%	72.2%				
Heating	72% _(c,1)	73% _(c,1)	85% _(c,1)	0.0% _(d,1)	0.0%(d,1)	72.0%	73.0%	85.0%				
Lighting	109% _(c,1)	108% _(c,1)	119% _(c,1)	3.8%(d,1)	2.5% <mark>(d,1)</mark>	107.6%	106.6%	117.5%				
Custom	72% _(c,1)	73% _(c,1)	85% _(c,1)	0.3% <mark>(d,1)</mark>	0.0% <mark>(d,1)</mark>	71.8%	72.8%	84.7%				
Other	72% _(c,1)	73% _(c,1)	85% _(c,1)	0.5% <mark>(d,1)</mark>	0.2%(d,1)	71.8%	72.8%	84.7%				
Comp. Air	72% _(c,1)	73% _(c,1)	85% _(c,1)	0.3% <mark>(d,1)</mark>	0.0% <mark>(</mark> d,1)	71.8%	72.8%	84.7%				
Refrigeration	72% _(c,1)	73% _(c,1)	85% _(c,1)	1.4% <mark>(d,1)</mark>	0.0% <mark>(d,1)</mark>	72.0%	83.8%	72.0%				

Table A3-2: C&I Electric Realization Rates (Small Business Energy Advantage)

Table A3-3: C&I Electric Realization Rates (Other C&I Programs)

	Gross Rea	alization %		FR 8	i SO	Net Rea	alization % (I	Note 1)			
End-use	kWh	Winter Seasonal Peak kW	Summer Seasonal kW	Free- ridership	Spillover	kWh	Winter Seasonal Peak kW	Summer Seasonal Peak kW			
		В	usiness & Energ	gy Sustainab	ility						
PRIME	54% <mark>(o)</mark>	100%	100%	0.0%	0.0%	54%	100%	100%			
O&M	79% <mark>(o)</mark>	258% <mark>(</mark>)	191% <mark>(</mark>)	0.0%	0.0%	79%	258%	191%			
RCx	105% <mark>(</mark>)	175% <mark>(o)</mark>	126% <mark>(o)</mark>	0.0%	0.0%	105%	175%	126%			
			Load Man	agement							
Load Response	100%	100%	100%	0.0%	0.0%	100%	100%	100%			
	Upstream Lighting										
LED	100%	100%	100%	18% <mark>(j)</mark>	0.0%	82%	82%	82%			

Commercial & Industrial Natural Gas Realization Rates

	Gross Realization	on %		FR &	sO	Net F	Realization %	(Note 1)			
End-use	Energy (ccf)	Peak Day (ccf)		Free- ridership	Spillover		Energy (ccf)	Peak Day (ccf)			
Energy Conscious Blueprint											
Envelope	68.0% <mark>(a)</mark>	100% <mark>(</mark>)		23.8% <mark>(d,2)</mark>	9.5% <mark>(d,2)</mark>		58.3%	85.7%			
HVAC	96.0% <mark>(a)</mark>	100%(a)		23.8% <mark>(d,2)</mark>	9.5% <mark>(d,2)</mark>		82.3%	85.7%			
Process	68.0% _(a)	100% _(a)		23.8% <mark>(d,2)</mark>	9.5% <mark>(d,2)</mark>		58.3%	85.7%			
Water Heating	96.0% _(a)	100% _(a)		23.8% <mark>(d,2)</mark>	9.5% <mark>(d,2)</mark>		82.3%	85.7%			
		-	Energy	Opportunities							
Controls	84.0% <mark>(b,1)</mark>	100.0%		30.0% <mark>(d,2)</mark>	31.0% <mark>(d,2)</mark>		84.8%	101.0%			
HVAC	84.0%(b,1)	100.0%		30.0% <mark>(d,2)</mark>	31.0% <mark>(d,2)</mark>		84.8%	101.0%			
Process	84.0% <mark>(b,1)</mark>	100.0%		30.0% <mark>(d,2)</mark>	31.0% <mark>(d,2)</mark>		84.8%	101.0%			
		Sm	all Busines	s Energy Adva	ntage						
Overall Program	78.0% _(c,2)	100.0%		0.0%	0.0%		78.0%	100.0%			
				O&M							
Overall Program (Note 9)	94% _(o)	108% <mark>(e)</mark>		0.0%	0.0%		94%	108%			
				RCx				-			
Overall Program	90% _(o)	72% _(e)		0.0%	0.0%		90%	72%			

Table A3-4: C&I Natural Gas Realization Rates

Residential Electric & Natural Gas Realization Rates

	Gross	Realization	%		FR &	SO	Net	Realization % (Note 2)
Measure	kWh or (CCF)	Winter Seasonal Peak kW or (Peak Day CCF)	Summer Seasonal Peak kW	Installation Rate	Free- ridership	Spill- over	kWh or (CCF)	Winter Seasonal Peak kW or (Peak Day CCF)	Summer Seasonal Peak kW
		Realizatior		ergy Solutions oplicable to b			where note	d below.	
Other Measures	100.0%	100.0%	100.0%	100.0%	0.0%	0.0%	100.0%	100.0%	100.0%
HES Lighting LEDs (Note 5)	100.0%	100.0%	100.0%	100.0%	10.0% <mark>(k)</mark>	0.0%	90.00%	90.00%	90.00%
Prescriptive Air Sealing (Note 5)	56.5% <mark>(k)</mark>	56.5% <mark>(k)</mark>	56.5% <mark>(k)</mark>	100.0%	0.0%	0.0%	56.5%	56.5%	56.5%
Blower Door Air Sealing (Note 5)	92.5% <mark>(k)</mark>	92.5% <mark>(k)</mark>	92.5% <mark>(k)</mark>	100.0%	0.0%	0.0%	92.5%	92.5%	92.5%
Duct Sealing (Note 5)	92.5% <mark>(k)</mark>	92.5% <mark>(k)</mark>	92.5% <mark>(k)</mark>	100.0%	0.0%	0.0%	92.5%	92.5%	92.5%
HES Insulation (Note 6)	68.8% <mark>(k)</mark>	68.8% <mark>(k)</mark>	68.8%(k)	100.0%	6.0% <mark>(m)</mark>	0.0%	64.7%	64.7%	64.7%
HES-IE Insulation (Note 6)	68.8% <mark>(k)</mark>	68.8% <mark>(k)</mark>	68.8% <mark>(k)</mark>	100.0%	0.0% <mark>(m)</mark>	0.0%	68.8%	68.8%	68.8%
HES Water Savings Measures	100.0%	100.0%	100.0%	100.0%	20.0% <mark>(k)</mark>	0.0%	80.0%	80.0%	80.0%
HES Water Pipe Wrap	100.0%	100.0%	100.0%	100.0%	28.0% <mark>(k)</mark>	0.0%	72.0%	72.0%	72.0%
Central A/C & HP	100%	100%	100%	100.0%	38.8% <mark>(h)</mark>	0.0%	61.2%	61.2%	61.2%
Appliances (Note 4)	94.3% <mark>(</mark> k)	94.3% <mark>(k)</mark>	94.3% <mark>(k)</mark>	100.0%	0.0%	0.0%	94.3%	94.3%	94.3%

Table A3-5: Residential Electric & Natural Gas Realization Rates

	Gross	Realization	%		FR &	SO	Net	Realization % (Note 2)		
Measure	kWh or (CCF)	Winter Seasonal Peak kW or (Peak Day CCF)	Summer Seasonal Peak kW	Install- ation Rate	Free- ridership	Spill- over	kWh or (CCF)	Winter Seasonal Peak kW or (Peak Day CCF)	Summer Seasonal Peak kW		
Home Energy Solutions/HES-Income Eligible* Realization Rates are applicable to both programs except as where noted below.											
Refrigerators	100.0%	100.0%	100.0%	100.0%	0.0%	0.0%	100.0%	100.0%	100.0%		
Windows	100.0%	100.0%	100.0%	100.0%	0.0%	0.0%	100.0%	100.0%	100.0%		
Water Heating	100.0%	100.0%	100.0%	100.0%	0.0%	0.0%	100.0%	100.0%	100.0%		
Heating System Retirement (Note 4)	63.7% <mark>(k)</mark>	63.7% <u>(k)</u>	63.7%(k)	100.0%	0.0%	0.0%	63.7%	63.7%	63.7%		
Heating System Replacement for Boiler and Gas Alternate	100.0%	100.0%	100.0%	100.0%	0.0%	0.0%	100.0%	100.0%	100.0%		
Gas Boiler, below 94% AFUE	100.0%	100.0%	100.0%	100.0%	48.0%(I)	4.0%(I)	56.0%	56.0%	56.0%		
Gas Boiler, 94% AFUE and above	100.0%	100.0%	100.0%	100.0%	16.0%	0.0%	84.0% <mark>(I)</mark>	84.0% <mark>(I)</mark>	84.0% <mark>()</mark>		
Gas Furnace	100.0%	100.0%	100.0%	100.0%	42.0% <mark>(I)</mark>	4.0% <mark>()</mark>	62.0%	62.0%	62.0%		
Boiler Circulator Pumps	100.0%	100.0%	100.0%	100.0%	40.0%(I)	9.0% <mark>(I)</mark>	69.0%	69.0%	69.0%		
ECM Furnace Fans	100.0%	100.0%	100.0%	100.0%	42.0% <mark>(I)</mark>	4.0%(I)	62.0%	62.0%	62.0%		

Table A3-5: Residential Electric & Natural Gas Realization Rates (continued)

	Gross	Realization	%		FR 8	k SO	Ne	t Realization %	(Note 2)
Measure	kWh or CCF	Winter Seasonal Peak kW or (Peak Day ccf)	Summer Seasonal Peak kW	Installation Rate	Free- ridership	Spill-over	kWh or (CCF)	Winter Seasonal Peak kW or (Peak Day CCF)	Summer Seasonal Peak kW
				Retail Pro	oducts				
LED Bulbs/ Luminaires, Non-Hard-to- Reach (Note 3)	100.0%	100.0%	100.0%	97.5%(g)	64.0%(f)	0.0%	35.1%	35.1%	35.1%
LED Bulbs/ Luminaires, Hard-to- Reach (Note 3)	100.0%	100.0%	100.0%	97.5% _(g)	44.0%(f)	0.0%	54.6%	54.6%	54.6%
LED Bulbs/ Luminaires, Combined Non HTR-HTR (Note 8)	100.0%	100.0%	100.0%	97.5	60.0%	0.0%	39%	39%	39%
Heat Pump Hot Water Heater	100.0%	100.0%	100.0%	100.0%	42.0% <mark>(I)</mark>	1.0% <mark>(I)</mark>	59.0%	59.0%	59.0%
Freezer	100.0%	100.0%	100.00%	100%	30% <mark>(n)</mark>	0.00%	70.0%	70.0%	70.0%
Clothes Washer	100.0%	100.0%	100.00%	100%	45% <mark>(n)</mark>	0.00%	55.0%	55.0%	55.0%
Dryer	100.0%	100.0%	100.00%	100%	15% <mark>(n)</mark>	0.00%	85.0%	85.0%	85.0%
Refrigerator	100.0%	100.0%	100.00%	100%	46% <mark>(n)</mark>	0.00%	54.0%	54.0%	54.0%
Dehumidifiers	100.0%	100.0%	100.00%	100%	84% <mark>(n)</mark>	0.00%	16.0%	16.0%	16.0%
Dishwashers	100.0%	100.0%	100.00%	100%	84% <mark>(n)</mark>	0.00%	16.0%	16.0%	16.0%
Sound Bars	100.0%	100.0%	100.00%	100%	48% <mark>(n)</mark>	0.00%	52.0%	52.0%	52.0%

Table A3-5: Residential Electric & Natural Gas Realization Rates (continued)

	Gross	s Realization 9	6		FR &	SO	Ne	t Realization % (Note 2)
Measure	kWh or (CCF)	Winter Seasonal Peak kW or (Peak Day ccf)	Summer Seasonal Peak kW	Installation Rate	Free- ridership	Spill-over	kWh or (CCF)	Winter Seasonal Peak kW or (Peak Day CCF)	Summer Seasonal Peak kW
			F	Retail Product	s (continued))			
Room Air Cleaners	100.0%	100.0%	100.00%	100%	29% <mark>(n)</mark>	0.00%	71.0%	71.0%	71.0%
Set-top Boxes	100.0%	100.0%	100.00%	100%	45% <mark>(n)</mark>	0.00%	55.0%	55.0%	55.0%
Computers	100.0%	100.0%	100.00%	100%	53% <mark>(n)</mark>	0.00%	47.0%	47.0%	47.0%
Blu Ray Player	100.0%	100.0%	100.00%	100%	61% <mark>(n)</mark>	0.00%	39.0%	39.0%	39.0%
			Re	esidential New	v Constructio	n			
Residential New Construction, Overall	100.0%	100.0%	100.0%	100.0%	69% _(p)	125% _(p)	156.0%	156.0%	156.0%
				Behavioral	Programs				
Home Energy Reports	100.0%	100.0%	100.0%	100.0%	0.0%	0.0%	100.0%	100.0%	100.0%
				Appliance	Turn-In				
Refrigerator Recycling	100%	100%	100%	100%	31.0% <mark>(i)</mark>	0.0%	69.0%	69.0%	69.0%
Freezer Recycling	100%	100%	100%	100%	41.0% <mark>(i)</mark>	0.0%	59.0%	59.0%	59.0%

Table A3-5: Residential Electric & Natural Gas Realization Rates (continued)

Changes from Last Version

- New residential HVAC realization rates.
- New Small Business Energy Advantage realization rates.
- New Business & Energy Sustainability realization rates.
- Updated or removed old references.

References

- [a] EMI, C20 Impact Evaluation of the Energy Conscious Blueprint, Program Years 2012 2013, Nov.
 6. 2015.
- [b] EMI, Evaluation of the Energy Opportunities Program: Program Year 2011, Apr. 1, 2014.
- [b,1] p. ES-5, Table 1-1.
- [b,2] p. ES-6, Table 1-2.
- **[b,3]** p. ES-6, Table 1-3.

- [c] ERS, C1639: Impact Evaluation of the Connecticut Small Business Energy Advantage Program, Mar. 20, 2018.
- [c,1] p. 4, Table 1-4.
- [c,2] p.7, Table 1-5, p.9, Recommendation 2.
- [d] Tetra Tech, 2011 C&I Electric & Gas Free-ridership and Spillover Study, Oct. 5, 2012.
- [d,1] pp. 3-4, Table 3-5.
- [d,2] pp. 3-5, Table 3-6.
- [e] Michaels Energy & Evergreen Economics, Impact Evaluation of the Retro-commissioning, Operation and Maintenance, and Business Sustainability Challenge Programs, Report, Dec. 17, 2012.
- [f] NMR Group, Inc. R1615 Light Emitting Diode ("LED") Net-to-Gross Evaluation, Aug. 7, 2017.
- [g] Connecticut LED Lighting Study Report (R154), Jan. 28, 2016, p. 35, Table 21.
- [h] ADM Associates, Inc., Residential Central A/C Regional Evaluation Free-Ridership Analysis, Oct. 2009, p. 9.
- [i] NMR, Massachusetts Appliance Turn-in Program Impact Evaluation, Jun. 15, 2011, p. 2, Table ES-3.
- [j] KEMA, Process Evaluation of the 2012 Bright Opportunities Program Final Report, Jun. 14, 2013, pp. 1-11, Table 1-3.
- [k] NMR and Cadmus, Impact Evaluation: Home Energy Services—Income-Eligible and Home Energy Services Programs: Volume 2 (R16), Final Report, Dec. 31, 2014.
- [I] West Hill Energy and Computing, CT HVAC and Water Heater Process and Impact Evaluation Report and CT Heat Pump Water Heater Impact Evaluation Report, R1614/R1613, May 16, 2018.
- [m] NMR Group, Inc. HES/HES-IE Process Evaluation and Real Time Research, Apr. 13,2016.
- [n] ENERGY STAR 2015 Shipment data Unit Shipment and Market Penetration Report Calendar Year 2015 Summary. Available at:

https://www.energystar.gov/ia/partners/downloads/unit_shipment_data/2015_USD_Summary_ Report.pdf?593e-b9e5.

- [0] ERS, C1641: Impact Evaluation of the Business and Energy Sustainability Program, Draft Report, Jul. 3, 2018, (p. 4 Table 1-3), (p. 5, Table 1-4), and (p.10, Recommendation 1).
- [p] NMR, R1707: Net-to-Gross Study ("NTG") of Connecticut Residential New Construction, Draft Report, Aug. 9, 2018, p. 3, Table 1.

Notes

- [1] Net Realization = (Gross realization %) x (100% Free ridership % + Spillover %). United Illuminating caps the net realization rate at 100%.
- [2] Net Realization = (Gross realization %) x (installation rate %) x (100% Free-ridership % + Spillover %). United Illuminating caps the net realization rate at 100%.
- [3] The Installation rate is the average of the 4-year installation rates given in **Ref [g]**.
- [4] Weighted average of results from the HES evaluation Ref [k].
- [5] Updated from **Ref** [k] to account for interactive effects.
- [6] Weighted average of study results incorporating the effect of changes to the 2019 PSD calculations. Updated in 2016 for results of interactive effects.

- [7] ECB Realization rates are based on the results in **Ref [a]**. For some categories, the results were weighted and averaged in order to accommodate the previously established end use categories.
- [8] Weighted Realization Rate based on planned non-HTR-HTR bulb split.
- [9] O&M realization rates are based on adopting recommendation #9 from the draft report, to use only the PSD's Grashof algorithm to calculate steam trap savings. See Section 3.2.6 for the steam trap replacement algorithm.

APPENDIX FOUR: LIFETIMES

Commercial and Industrial Lifetimes

C&I measure life includes equipment life and measure persistence (not savings persistence).

- 1. Equipment Life means the number of years that a measure is installed and will operate until failure; and
- 2. Measure Persistence takes into account business turnover, early retirement of installed equipment, and other reasons measures might be removed or discontinued. In addition, the measure life for certain measures, such as LED lighting, takes into account the anticipated market adoption of more efficient baseline technologies.

For retrofit/early retirement programs, the measure life will take into account both the expected remaining life of the measure being replaced and the expected changes in baselines over time.

Description	Remaining Useful Life	Retrofit	Lost Opportunity	Operations	Maintenance	RCx		
Lighting Systems, including								
Automatic Photocell Dimming System	N/A	9 _(a)	10 _(a)	N/A	N/A	N/A		
Bi-Level Switching (demand reduction)-	N/A	10 _(a,*)	10 _(a,*)	N/A	N/A	N/A		
Fixture (LED)	N/A	13 <mark>(I)</mark>	15 _(a)	N/A	N/A	N/A		
Fluorescent Lighting System Power Reduction Control	N/A	9 _(a,*)	N/A	N/A	N/A	N/A		
Lamp and Ballast Conversions	N/A	13 _(a)	N/A	N/A	N/A	N/A		
Lamp Replacement (LED)	N/A	5 _(I)	N/A	6 <mark>(I)</mark>	6 <mark>(I)</mark>	N/A		
Lamp Replacement (fluorescent)	N/A	5 _(m)	N/A	5 _(m)	5 _(m)	N/A		
LEDs (screw-in bulbs)	N/A	85 <mark>()</mark>	N/A	N/A	N/A	N/A		
Occupancy Sensor	N/A	9 _(a)	10 <mark>(a)</mark>	N/A	N/A	N/A		
Re-circuiting and New Control	N/A	10 _(a,*)	N/A	N/A	N/A	N/A		
Remove Unnecessary Lighting Fixture	N/A	5 _(m)	N/A	N/A	N/A	N/A		
Reprogramming of EMS Control	N/A	N/A	N/A	5 _(b,2)	N/A	8 _(m)		
Sweep Controls/EMS Based Control	N/A	10 <mark>(a,*)</mark>	15 _(a,*)	N/A	N/A	N/A		
Timer Switch	N/A	10 _(a,*)	N/A	N/A	N/A	N/A		
Building Envelope								
Cool Roof	N/A	N/A	15 <mark>(c/14)</mark>	N/A	N/A	N/A		
Insulation	N/A	20(c/19)	20(c/19)	N/A	N/A	N/A		
Movable Window Insulation	N/A	10 <mark>(m)</mark>	10 <mark>(m)</mark>	N/A	N/A	N/A		
New Window	N/A	N/A	20(c/16)	N/A	N/A	N/A		
Roof Spray Cooling	N/A	15 <mark>(m)</mark>	15 _(m)	N/A	N/A	N/A		

Table A4-1: Lifetimes of Measures

Description	Remaining Useful Life	Retrofit	Lost Opportunity	Operations	Maintenance	RCx
Window Film	N/A	10 <mark>(c/18)</mark>	10 <mark>(c/18)</mark>	N/A	N/A	N/A
	Dom	estic Hot Wa	iter			
Energy-Efficient Motor	N/A	15 _(a)	20 _(a)	N/A	N/A	N/A
Faucet Aerator	N/A	10 <mark>(j)</mark>	N/A	N/A	N/A	N/A
Natural Gas Fired Water Heater	N/A	N/A	15 _(c/93)	N/A	N/A	N/A
Heat Pump Water Heater	N/A	10 _(c/143*)	10 _(c/143*)	N/A	N/A	N/A
Heat Recovery	N/A	15 <mark>(m)</mark>	15 _(m)	N/A	N/A	N/A
Low-Flow Showerhead	N/A	10 <mark>(j)</mark>	N/A	N/A	N/A	N/A
Point-of-Use Water Heater	N/A	20 _(c/95)	20 _(c/95)	N/A	N/A	N/A
Pre-Rinse Spray Valve	N/A	5 _(h)	N/A	N/A	N/A	N/A
Solar Water Heater	N/A	20 _(m)	20 _(m)	N/A	N/A	N/A
Heating	, Ventilating a	nd Air Condi	tion (HVAC) Syst	ems		
2-Speed Motor Control in Rooftop Unit	N/A	13 _(a,*)	15 _(a,*)	N/A	N/A	N/A
Additional Pipe Insulation	N/A	10(m)	10(m)	N/A	N/A	N/A
Additional Vessel Insulation	N/A	10 _(m)	10 _(m)	N/A	N/A	N/A
Air Curtain	N/A	15 _(m)	15 _(m)	N/A	N/A	N/A
Air Distribution System Modifications & Conversions	N/A	20 _(m)	20 _(m)	N/A	N/A	N/A
Cool Thermal Storage	N/A	15 _(m)	15 _(m)	N/A	N/A	N/A
Cooling Tower Alternates	N/A	13 _(m)	15 _(c/45*)	N/A	N/A	N/A
Dehumidifier	N/A	13 _(m)	15 _(m)	N/A	N/A	N/A
Duct Insulation	N/A	20 _(a,**)	N/A	N/A	N/A	N/A
Duct Sealing	N/A	18(c/31)	N/A	N/A	N/A	N/A
Duct Type Air Destratification System	N/A	15(f*)	15 _(f*)	N/A	N/A	N/A
Economizer - Air/Water	N/A	7 _(a)	10 _(a)	N/A	N/A	N/A
Electric Chiller	5	N/A	23 _(a)	N/A	N/A	N/A
Electric Spot Radiant Heat	N/A	10 <mark>(m)</mark>	10 _(m)	N/A	N/A	N/A
Energy-Efficient Motor	N/A	15 _(a)	20 _(a)	N/A	N/A	N/A
Energy-Efficient Packaged Terminal Unit	N/A	N/A	15 _(a)	N/A	N/A	N/A
Evaporative Cooling (unitary)	N/A	N/A	15 _(a,*)	N/A	N/A	N/A
Gas Engine Chiller	N/A	N/A	15 _(d)	N/A	N/A	N/A
Gas Fired Boiler (Condensing)	5	N/A	15 _(m)	N/A	N/A	N/A
Gas Fired Boiler (Non-Condensing)	N/A	N/A	20 _(c/24)	N/A	N/A	N/A
Gas Fired Radiant Heater	N/A	N/A	15 _(m)	N/A	N/A	N/A
Gas Furnaces	N/A	N/A	20 _(c/24*)	N/A	N/A	N/A
High-Efficiency Unitary Equipment (A/C and Heat Pumps)	5	N/A	15 _(a)	N/A	N/A	N/A
Low-Leakage Damper	N/A	12 _(m)	12 _(m)	N/A	5 _(b,2)	N/A

Description	Remaining Useful Life	Retrofit	Lost	Operations	Maintenance	RCx
Make-up Air Unit for Exhaust Hood	N/A	15 _(m)	Opportunity 15 _(m)	N/A	N/A	N/A
Outdoor Air Damper Adjustment or Modification	N/A	N/A	N/A	N/A	5 _(b,2)	N/A
Paddle Type Air Destratification Fan	N/A	15 _(f*)	15 _(f*)	N/A	N/A	N/A
Plate/Heat Pipe Type Heat Recovery System	N/A	14 _(c/27)	14(c/27)	N/A	N/A	N/A
Repair Air Side Economizer	N/A	N/A	N/A	N/A	5(b,2)	N/A
Repair Steam/Air Leaks	N/A	N/A	N/A	N/A	5(b,2)	N/A
Replace Steam Traps	N/A	N/A	N/A	N/A	6 _(g)	N/A
Rotary Type Heat Recovery System	N/A	14 _(c/41)	14 (c/41)	N/A	N/A	N/A
Variable Speed Drive	N/A	13 _(b,1)	15 _(b,1)	N/A	N/A	N/A
VAV System Components	N/A	13 _(m)	N/A	N/A	N/A	N/A
Water/Steam Distribution System Modifications & Conversions	N/A	20(m)	20 _(m)	N/A	N/A	N/A
Zoned Circulator Pump System	N/A	15 <mark>(m)</mark>	N/A	N/A	N/A	N/A
	Η'	VAC Controls	;			
Adjust Scheduling	N/A	N/A	N/A	5(b,2)	N/A	6 _(m)
Controls to Eliminate Simultaneous Heating and Cooling	N/A	10 _(a)	N/A	5 _(b,2)	N/A	8 _(m)
Demand Control Ventilation - Multi Zone	N/A	10 _(a)	10 _(m)	N/A	N/A	N/A
Demand Control Ventilation - Single Zone	N/A	10 _(a)	10 _(m)	N/A	N/A	8 _(m)
EMS/Linked HVAC Controls	N/A	10 _(a)	15 _(a)	N/A	N/A	8 _(m)
Enthalpy Control Economizer	N/A	7 _(a)	10 _(a)	N/A	N/A	N/A
Modify HVAC Controls	N/A	10 _(a)	N/A	N/A	N/A	8(m)
New/Additional EMS Points	N/A	10 _(a)	15 _(a)	N/A	N/A	N/A
Programmable Thermostat	N/A	8 _(a)	N/A	N/A	N/A	N/A
Repair HVAC Controls	N/A	N/A	N/A	N/A	5 _(b,2)	N/A
Reprogramming of EMS Controls	N/A	N/A	N/A	5(b,2)	N/A	8(m)
Reset Set-points	N/A	N/A	N/A	5(b,2)	N/A	6(m)
Single Zone Controls NOT Linked to other Controls	N/A	10 _(a)	N/A	N/A	N/A	N/A
Time Clock	N/A	11(c/43)	N/A	N/A	N/A	N/A
Upgrade to Dual/Comparative Enthalpy Economizer	N/A	10 _(a,*)	10 _(a,*)	N/A	N/A	, N/A
	R	efrigeration				
Additional Pipe Insulation - Refrigeration System	N/A	11 _(c/83)	11 _(c/83)	N/A	N/A	N/A

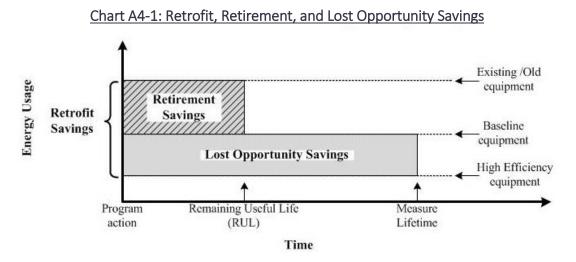
Description	Remaining Useful Life	Retrofit	Lost Opportunity	Operations	Maintenance	RCx
Additional Vessel Insulation - Refrigeration System	N/A	11(c/83*)	11 _(c/83*)	N/A	N/A	N/A
Adjust Scheduling	N/A	N/A	N/A	5 _(b,2)	N/A	8 _(m)
Ambient Sub-cooling	N/A	15 _(c/85)	15 _(c/85)	N/A	N/A	N/A
Auto Cleaning System for Condenser Tubes	N/A	10 _(m)	10 _(m)	N/A	N/A	N/A
Case Cover	N/A	5(c/84)	5 _(c/84)	N/A	N/A	N/A
Commercial Refrigeration System and Components	N/A	15 _(c/85)	15 _(c/85)	3 _(I)	N/A	N/A
Demineralized Water for Ice	N/A	10 <mark>(m)</mark>	10 _(m)	N/A	N/A	N/A
Electronically Commutated Motor	N/A	15 _(c/85)	15 _(c/85)	N/A	N/A	N/A
Heat Recovery from Refrigeration System	N/A	10 _(c/80)	13 _(m)	N/A	N/A	N/A
Hot Gas Bypass for Defrost or Regeneration	N/A	10 _(m)	10 _(m)	N/A	N/A	N/A
Industrial Refrigeration Systems and Components	N/A	20 _(b,1)	20 _(b,1)	3 _(I)	N/A	N/A
Low Case HVAC Returns	N/A	10 _(m)	10 _(m)	N/A	N/A	N/A
Low Emissivity Ceiling Surfaces	N/A	15 _(m)	15 _(m)	N/A	N/A	N/A
Mechanical Sub-cooling	N/A	15 _(c/85)	15 _(c/85)	N/A	N/A	N/A
Motorized Insulated Door	N/A	8 _(c/75)	8 _(c/75)	N/A	N/A	N/A
Open or Enclosed Display Case	N/A	12 _(c/76)	12 _(c/76)	N/A	N/A	N/A
Adding Doors on Open Display Case	N/A	12 _(c/76*)	N/A	N/A	N/A	N/A
Oversized Condenser	N/A	15 _(c/85)	15 _(c/85)	N/A	N/A	N/A
Polyethylene Strip Curtain	N/A	4 _(c/88)	4 _(c/88)	N/A	N/A	N/A
Refrigeration Control	N/A	10 _(b,1)	10 _(b,1)	5 _(b,2)	N/A	10 _{(c/8}
Reset Set-points	N/A	N/A	N/A	5 _(b,2)	N/A	8(m)
Vending Machine Occupancy Sensor	N/A	5(b,1)	N/A	N/A	N/A	N/A
	Proc	ess Equipme	ent			
Add Regulator Valves in Compressed Air System	N/A	10 _(m)	10 _(m)	N/A	N/A	10 _{(c/8} 6)
Air Compressor	N/A	13 _(b,1)	15 _(b,1)	N/A	N/A	N/A
Clothes Washer	N/A	N/A	11(i)	N/A	N/A	N/A
Compressed Air Distribution and Storage System	N/A	10 _(m)	N/A	N/A	N/A	N/A
Energy-Efficient Transformer	N/A	15 _(a,*)	20 _(a,*)	N/A	N/A	N/A
Energy-Efficient Motor	N/A	15 _(a)	20(a)	N/A	N/A	N/A
Injection Molding Machine Jacket	N/A	5(m)	N/A	N/A	N/A	N/A

Description	Remaining Useful Life	Retrofit	Lost Opportunity	Operations	Maintenance	RCx
Install Air Compressor No-Loss Condenser Drain	N/A	10 _(m)	10 _(m)	N/A	5 _(b,2)	10 _{(c/8} 6)
Interlock Air System Solenoid Valves with Machine Operation	N/A	10 _(a,*)	10 _(a,*)	N/A	N/A	10 _{(c/8} 6)
Interlock Exhaust Fans w/ Machine Operations	N/A	10 _(a,*)	10 _(a,*)	N/A	N/A	10 _{(c/8} 6)
Plastic Injection Molding Machine	N/A	13 _(m)	15 _(m)	N/A	N/A	N/A
PRIME	N/A	N/A	5 _(e)	N/A	N/A	N/A
Refrigerated Air Dryer	N/A	13 _(b,1)	15 _(b,1)	N/A	N/A	N/A
Repair Steam/Compressed Air Leaks	N/A	N/A	N/A	N/A	5 _(b,2)	N/A
Replace Steam Traps	N/A	N/A	N/A	N/A	6 _(g)	N/A
Variable Frequency Drive	N/A	13 _(b,1)	15 _(b,1)	N/A	N/A	N/A
Water Treatment Magnets	N/A	10 _(m)	N/A	N/A	N/A	N/A
	Commercia	al Kitchen Ec	uipment			
Convection Oven	N/A	N/A	12 _(c/20)	N/A	N/A	N/A
Dishwasher - Under Counter	N/A	N/A	10 _(k)	N/A	N/A	N/A
Dishwasher - Stationary Single Tank Door	N/A	N/A	15 _(k)	N/A	N/A	N/A
Dishwasher - Single Tank Conveyor	N/A	N/A	20(k)	N/A	N/A	N/A
Dishwasher - Multi Tank Conveyor	N/A	N/A	20(k)	N/A	N/A	N/A
Freezer	N/A	N/A	12 _(c/76)	N/A	N/A	N/A
Fryer	N/A	N/A	12(c/20)	N/A	N/A	N/A
Griddle	N/A	N/A	12(c/20)	N/A	N/A	N/A
Hot Food Holding Cabinet	N/A	N/A	12(c/23)	N/A	N/A	N/A
Ice Machine	N/A	N/A	12 _(c/82)	N/A	N/A	N/A
Refrigerator	N/A	N/A	12 _(c/76)	N/A	N/A	N/A
Steam Cooker	N/A	N/A	12 _(c/20)	N/A	N/A	N/A
		Other				
Whole Building Performance	N/A	N/A	17 _(m)	N/A	N/A	N/A

Changes from Last Version

- Updated LED lifetimes; and
- Added in RUL Column.

References


[a] GDS Associates Inc., Measure Life Report, Residential and Commercial Industrial Lighting and HVAC Measures, Jun. 2007, Table 2.

- [a,*] This measure is similar to those in the report, so a measure life from Table 2 was used.
- [a,**] This measure is similar to those in the report, so a measure life from Table 1 was used.
- [b] Energy & Resource Solutions ("ERS"), Measure Life Study: prepared for The Massachusetts Joint Utilities, Oct. 10, 2005.
- [b,1] Table 1-1.
- [b,2] pp. 4-9.
- [c] California Public Utilities Commission, 2008 Database for Energy-Efficient Resources, Version 2008.2.05, Dec. 16, 2008, EUL/RUL (Effective/Remaining Useful Life) Values, MS Excel Spreadsheet.
- [c/#] Row #.
- [c/#*] Similar measure to row #; row # used.
- [d] Gas chiller measure life was set by the CT DPUC in their decision in Docket 05-07-14, in response to Public Act 05-01, "An Act Concerning Energy Independence". Dec. 28, 2005, p. 29, Table 4.
- [e] Energy & Resource Solutions (ERS), Process Reengineering for Increased Manufacturing Efficiency Program Evaluation, Mar. 26, 2007, pp. 1-5.
- [f*] Efficiency Maine TRM, 3/5/07, p. 91. Similar measure.
- [g] Energy and Environmental Analysis, Inc. Steam Traps Workpaper for PY2006-2008. Prepared for Southern California Gas Company, Dec. 2006, p. 14, Section 9.1.
- [h] Veritec Consulting, "*Region of Waterloo Pre-Rinse Spray Valve Pilot Study Final Report*", Jan. 2005, Executive Summary.
- [i] Appliance Magazine. U.S. Appliance Industry: Market Share, Life Expectancy & Replacement Market, and Saturation Levels. Jan. 2010. p. 10.
- [j] GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; Table B-2a.
- [k] ENERGY STAR commercial kitchen equipment savings calculator, at: <u>https://www.energystar.gov/sites/default/files/asset/document/commercial kitchen equipment</u> <u>calculator 0.xlsx</u>.
- [I] Adjusted measure life, estimated based on residential lighting market saturation trends, penetration, and hours of use from NMR, *Connecticut LED Lighting Study Report (R154)*, Jan. 2016.
- [m] Estimated.

Residential Lifetimes

Measure life for residential measures includes equipment life and measure persistence. Measure life for certain measures, such as LED lighting, takes into account anticipated market adoption of more efficient baseline technologies.

The residential programs use a slightly different definition of "retrofit" savings than C&I programs. Where "retrofit" measures in C&I utilize a blended "retrofit" lifetime, residential measures utilize a two-part lifetime savings calculation. For early retirement, savings includes two parts: (1) the retirement savings piece that lasts until the end of the remaining useful life ("RUL") of the existing equipment, after which (2) lost opportunity savings continue until the last year of the retrofit measure's effective useful life ("EUL"). This is illustrated by Chart A4-1.

Lost Opportunity lifetimes apply to the portion of savings due to choosing a high-efficiency product over a standard-efficiency product available on the market. Both Retail and New Home measure applications result in Lost Opportunity savings, while measures applied in existing homes and turn-in measures may result in both Retirement and Lost Opportunity Savings. Numbers in parentheses refer to lifetimes specially pertaining to a low-income home.

Measure	Retirement RUL	Lost Opportunity EUL
Light Bulbs		
LED, Bulb	N/A	65 <mark>(k)</mark>
LED, Luminaire	N/A	6 <mark>(k)</mark>
Heating, Ventilation, and Air-Conditi		
Air Source Heat Pump	5 _(b)	18 _(c,1)
Boiler (Gas)	5 _(b)	20 <mark>(a)</mark>
Boiler Reset Control	N/A	15 _(e)
Central Air Conditioning System	5 _(b)	18 _(c,1)
Clean Tune and Test	N/A	2 _(j)
Duct Insulation	N/A	20 _(c,1)
Duct Sealing Retrofit	N/A	20 _(c,1)
Ductless Split Heat Pump	N/A	18 _(c,1)
Electronically Commutated Motor (Fan)	N/A	18 _(c,1)
ECM Circulator Pump	N/A	15 _(f)
Furnace (Natural Gas)	5 _(b)	20 <mark>(b)</mark>
Geothermal Heat Pump	N/A	18(c,1)
Package Terminal Heat Pump	5 _(b)	18 _(c,1)
QIV, Air Source Heat Pump	N/A	18 _(c,1)
QIV, Boiler (Boiler Reset)	N/A	20(a)
QIV, Central Air Conditioning System	N/A	18(c,1)
QIV, Geothermal Heat Pump	N/A	18 _(c,1)
Wi-Fi Thermostat	N/A	15 _(g)
Appliances		
Room Air Cleaner	N/A	9 <mark>(m)</mark>
Clothes Washers, Clothes Dryer	4(b)	11 _(a)
Dehumidifier	4 _(b)	12 _(c,1)
Dish Washer	4 _(b)	10 _(a)
Freezer	4 (8) _(b)	11 _(a)
Refrigerator	5 (10) _(b)	12 _(a)
Room A/C Unit	4 _(b)	9 _(a)
Electronics		
Advanced Power Strip	N/A	5 _(i)
Television	N/A	9 _(n)
Blu-Ray Player	N/A	7 _(n)

Table A4-1: Retirement and Lost Opportunity Lifetimes

Measure	Retirement RUL	Lost Opportunity EUL
DVD Player	N/A	7 _(n)
Telephone	N/A	7 _(n)
Computer Monitor	N/A	7 _(o)
Laptop/Desktop Computer	N/A	4 ₍₀₎
Sound Bar	N/A	7 _(m)
Envelope		
Air Sealing and Weatherization (Non-Blower Door)	N/A	20 _(c,1)
Blower Door	N/A	20 _(c,1)
Broken Window Repair	N/A	5 _(b)
Insulating Attic Openings	N/A	25 _(c,1)
Insulation	N/A	25 _(c,1)
Storm Window Installation	N/A	20 _(c,1)
Window Replacement	N/A	25 _(c,1)
Domestic Hot Wa	ter	
Flip and Faucet Aerator	N/A	5 _(b)
Heat Pump Water Heater	N/A	13 <mark>(I)</mark>
High-Efficiency Storage Gas Water Heater	N/A	11(b,5)
On Demand Tankless Gas Water Heater	N/A	20 _(b,2)
Pipe Insulation	N/A	15 <mark>(b)</mark>
Shower Head Low Flow	N/A	10 _(c,2)
Water Heater Thermostat Setting (Existing Unit)	N/A	4 _(b)
Water Heater Wrap	N/A	5 _(b)
Solar Water Heating	N/A	20 <mark>(h)</mark>
REM Savings (for ENERGY S	TAR Homes)	
Cooling	N/A	25 _(c,1)
Domestic Water Heating	N/A	25 _(c,1)
Heating	N/A	25 _(c,1)
BOP (Builder Option Plan for ENE	RGY STAR Homes)	
Cooling	N/A	25 <mark>(c,1)</mark>
Domestic Water Heating	N/A	25 _(c,1)
Heating	N/A	25 _(c,1)
Behavioral Progra	ms	
Home Energy Reports	N/A	3+ _(d)

Changes from Last Version

• Updated Residential LED lifetimes;

• Updated Home Energy Reports lifetime.

References

- [a] Appliance Magazine. U.S. Appliance Industry: Market Share, Life Expectancy & Replacement Market, and Saturation Levels. Jan. 2010. p. 10.
- [b] California Public Utilities Commission, 2008 Database for Energy-Efficient Resources, Dec. 16, 2008. Available at:

http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls, last accessed May 31, 2011, Version 2008.2.05.

- **[b,1]** Cell D135.
- [b,2] Cell D146.
- [b,3] Cell D141.
- [b,4] Cell D143.
- [b,5] Cell D145.
- [C] GDS Associates Inc. *Measure Life Report, Residential and Commercial Industrial Lighting and HVAC Measures,* Jun. 2007.
- [c,1] Table 1.
- **[c,2]** Appendix C, p. C-6.
- [d] NMR, 1606 Eversource Behavior Program Persistence Evaluation, Oct. 15, 2017.
- [e] The American Council for an Energy-Efficient Economy, <u>Emerging Technologies Report</u>, p. 2, May 2006.
- [f] Rhode Island TRM, Nation Grid, 2012, p. M-76.
- [g] Environmental Protection Agency (2010). *Life Cycle Cost Estimate for Programmable Thermostats*. Accessed on Oct. 12, 2011.
- [h Solar Thermal Systems Analysis, Tim Merrigan, National Renewable Energy Laboratory. Available at: https://www1.eere.energy.gov/solar/pdfs/solar_tim_merrigan.pdf.
- [i] Plug Load Smart Strips, 2015 Massachusetts TRM. p. 162.
- [j] NYSERDA (New York State Energy Research and Development Authority), \$mart Equipment Choices Database.
- [k] Adjusted measure life, estimated based on lighting market saturation trends, penetration, and hours of use from NMR, *Connecticut LED Lighting Study Report (R154)*, Jan. 2016.
- [I] *Heat Pump Water Heaters and American Homes: A Good Fit?*, Lawrence Berkeley National Laboratory, pp. 9-74, 2010.
- [m] EPA Next Gen Product Analysis_10.9.14.xlsx. Last Accessed on Jul. 1, 2015.
- [n] Savings Estimate for ENERGY STAR Qualified Consumer Electronics, ENERGY STAR Consumer Electronics Calculator, ENERGY STAR. Available at: https://www.energystar.gov/sites/default/files/asset/document/Consumer_Electronics_Calculator.x lsx. Last accessed on Jul. 19, 2017.
- [0] Savings Estimate for ENERGY STAR Qualified Office Equipment, ENERGY STAR Office Equipment Savings Calculator, ENERGY STAR. Available at:

https://www.energystar.gov/sites/default/files/asset/document/Office%20Equipment%20Calculator.xlsx. Last accessed on Jul. 19, 2017.

APPENDIX FIVE: HOURS OF USE

Commercial and Industrial Hours of Use and EFLH

Facility Type	Lighting Hours	Cooling FLHrs	Heat Pump FLHrs*	HVAC Fan Motor Hours	CHWP & Cooling Towers (Note [2])	Heating Pumps (Note [2])
Auto Related	4,056	837	1,171	4,056	1,878	5,376
Bakery	2,854	681	1,471	2,854	1,445	5,376
Banks, Financial Center	3,748	797	1,248	3,748	1,767	5,376
Church	1,955	564	1,694	1,955	1,121	5,376
College: Cafeteria	6,376	1,139	594	6,376	2,713	5,376
College: Classes/Administrative	2,586	646	1,537	2,586	1,348	5,376
College: Dormitory	3,066	709	1,418	3,066	1,521	5,376
Commercial Condo	4,055	837	1,172	4,055	1,877	5,376
Convenience Store	6,376	1,139	594	6,376	2,713	5,376
Convention Center	1,954	564	1,695	1,954	1,121	5,376
Court House	3,748	797	1,248	3,748	1,767	5,376
Dining: Bar Lounge/Leisure	4,182	854	1,140	4,182	1,923	5,376
Dining: Cafeteria/Fast Food	6,456	1,149	574	6,456	2,742	5,376
Dining: Family	4,182	854	1,140	4,182	1,923	5,376
Entertainment	1,952	564	1,695	1,952	1,120	5,376
Exercise Center	5,836	1,069	728	5,836	2,518	5,376
Fast Food Restaurant	6,376	1,139	594	6,376	2,713	5,376
Fire Station (Unmanned)	1,953	564	1,695	1,953	1,121	5,376
Food Store	4,055	837	1,172	4,055	1,877	5,376
Gymnasium	2,586	646	1,537	2,586	1,348	5,376
Hospital	7,674	1,308	270	7,674	3,180	5,376
Hospitals/Health Care	7,666	1,307	272	7,666	3,177	5,376
Industrial: 1 Shift	2,857	681	1,470	2,857	1,446	5,376
Industrial: 2 Shift	4,730	925	1,003	4,730	2,120	5,376
Industrial: 3 Shift	6,631	1,172	530	6,631	2,805	5,376
Laundromat	4,056	837	1,171	4,056	1,878	5,376
Library	3,748	797	1,248	3,748	1,767	5,376
Light Manufacturer	2,857	681	1,470	2,857	1,446	5,376
Lodging (Hotel/Motel)	3,064	708	1,418	3,064	1,521	5,376
Mall Concourse	4,833	938	978	4,833	2,157	5,376
Manufacturing Facility	2,857	681	1,470	2,857	1,446	5,376
Medical Office	3,748	797	1,248	3,748	1,767	5,376
Motion Picture Theatre	1,954	564	1,695	1,954	1,121	5,376
Multi-Family (Common Areas)	7,665	1,306	273	7,665	3,177	5,376

Table A5-1: C&I Hours of Use

Facility Type	Lighting Hours	Cooling FLHrs	Heat Pump FLHrs*	HVAC Fan Motor Hours	CHWP & Cooling Towers (Note [2])	Heating Pumps (Note [2])
Museum	3,748	797	1,248	3,748	1,767	5,376
Nursing Home	5,840	1,069	727	5,840	2,520	5,376
Office (General Office Types)	3,748	797	1,248	3,748	1,767	5,376
Office/Retail	3,748	797	1,248	3,748	1,767	5,376
Parking Garage and Lot	4,368	878	1,094	4,368	1,990	5,376
Penitentiary	5,477	1,022	817	5,477	2,389	5,376
Performing Arts Theatre	2,586	646	1,537	2,586	1,348	5,376
Police/Fire Station (24 Hr)	7,665	1,306	273	7,665	3,177	5,376
Post Office	3,748	797	1,248	3,748	1,767	
Pump Station	1,949	563	1,696	1,949	1,119	5,376
Refrigerated Warehouse	2,602	648	1,533	2,602	1,354	5,376
Religious Building	1,955	564	1,694	1,955	1,121	5,376
Residential (Except Nursing Homes)	3,066	709	1,418	3,066	1,521	5,376
Restaurant	4,182	854	1,140	4,182	1,923	5,376
Retail	4,057	837	1,171	4,057	1,878	5,376
School/University (Ref [1])	2,187	594	1,637	2,187	1,205	5,376
Schools (Jr./Sr. High) (Ref [1])	2,187	594	1,637	2,187	1,205	5,376
Schools (Preschool/Elementary) (Ref [1])	2,187	594	1,637	2,187	1,205	5,376
Schools (Technical/Vocational) (Ref [1])	2,187	594	1,637	2,187	1,205	5,376
Small Services	3,750	798	1,247	3,750	1,768	5,376
Sports Arena	1,954	564	1,695	1,954	1,121	5,376
Town Hall	3,748	797	1,248	3,748	1,767	5,376
Transportation	6,456	1,149	574	6,456	2,742	5,376
Warehouse (Not Refrigerated)	2,602	648	1,533	2,602	1,354	5,376
Waste Water Treatment Plant	6,631	1,172	530	6,631	2,805	5,376
Workshop	3,750	798	1,247	3,750	1,768	5,376

Changes from Last Version

No changes.

References

[1] "CT and MA Utilities 2004-05 Lighting Hours of Use for School Buildings Baseline Study," Final Report, Sep. 7, 2006, RLW Analytics.

Notes

- [1] The hours listed in Table A5-1 are default hours to be used when site-specific hours are not available. These hours have been developed over the years and are taken into account during program evaluations. Any errors, whether positive or negative, are trued up in the realization rates. Significant changes to Table A5-1 will only be done if the evaluation contractor provides "going forward" realization rates along with updated hours.
- [2] Since it is common to have redundant pumps, the hours provided above are estimated based on full operation of only the pumps(s) required to maintain system flow (lead pump(s)). Therefore, lag pump(s) have 0 hours of operation even if the pumps are typically alternated. For example, if a system had two 10hp pumps but only one was required to operate at any given time to maintain system flow (lead/lag), then the EFLHs would be based on one 10hp pump.

APPENDIX SIX: NON-ENERGY IMPACTS

Residential Non-Energy Impacts

The Companies currently quantify and count a number of Non-Energy Impacts ("NEIs") in the Total Resource Cost Test, including: water, non-embedded emissions, and non-resource (e.g., lower maintenance) savings. A growing body of evidence suggests that consumers consider NEIs in their choice to adopt energy efficiency measures. NEIs have been estimated at 50-300 percent of annual household energy savings (**Ref [1]**). Many jurisdictions across the United States have quantified numerous NEIs and they include them in the Total Resource Cost Test.

The Companies are not including these NEIs in their benefit-cost screening, and the NEIs referenced below are provided for informational purposes only. The Companies support improvements to their costeffectiveness methodology and are committed to continuing to work with DEEP in 2019 to explore modifications to the current benefit cost methodology to better align the tests with current policy including the 2018 Comprehensive Energy Strategy. Modifications may include an assessment of benefits (including NEIs) and costs that are included in benefit-cost screening, as well as structural changes to benefit-cost screening tests to align them with strategic electrification strategies and other policies in the 2018 Comprehensive Energy Strategy.

	HES	HES-IE	Rebate	MF
Comfort	0.25	0.17	0.31	0.14
Outside Noise	0.04	0.05	0.06	
Appliance Noise	0.05	0.06	0.15	
Maintenance	0.07	0.08	0.18	0.15
Home Value	0.12	0.07	0.24	0.09
Home Appearance	0.03	0.06	0.04	
Home Safety	0.05	0.07	0.05	0.21
Lighting Quality	0.08	0.14		
Complaints	0	0	0	0.08
Total	0.69	0.70	1.03	0.67

Table A6-1: Residential Non-Energy Impacts (Ref [2])

The annual customer bill savings are multiplied by the factors in Table A6-1 to estimate the NEIs. The NEI is an annual benefit that is multiplied over the life of the measure. For example, if a utility customer implements an energy-saving measure through the HES program, the annual NEI is 69 cents for every dollar saved. The annual benefit is credited every year for the life (Appendix Four) of the measure.

	NEI Dollar Impacts for Business and Energy Sustainability Programs (\$/source MMBtu Savings)		
NEI Category	PRIME	O&M	RCx
Fuel oil, propane, and wood	N/A	N.D.	\$0.15
Fresh potable water supplies	N/A	\$0.06	\$0.82
Labor requirements or labor associated costs	\$153	\$0.42	N/A
Equipment operations and maintenance	N.D.	N.D.	\$0.53
Materials or other supply needs	N.D.	\$1.47	(\$1.74)
Product spoilage	N/A	\$0.44	N/A
TOTAL	\$153	\$2.39	(\$0.23)

Table A6-2: Commercial & Industrial Non-Energy Impacts (Ref [3])

N/A = Not applicable.

N.D. = No data from survey to quantify impacts.

Table A6-2 presents the average cost impacts from NEI categories for the BES suite of programs for all projects, not just those with NEIs. NEIs are converted to dollars per source MMBtu to apply to both natural gas and electricity savings. The following formula was used to convert values to source MMBtus:

1 kWh =3.413 kBtu / \approx 34% generation efficiency = 0.010 source MMBtus.

References

- [1] Valuation of Non-Energy Benefits to Determine Cost-Effectiveness of Whole House Retrofit Programs: A Literature Review. Jennifer Thorne Amann, May 2006.
- [2] NMR Group, Inc. Submitted to Connecticut Energy Efficiency Fund Board, Eversource, and United Illuminating. <u>Project R4 HES/HES-IE Process Evaluation and R31 Real-Time Research</u>. Apr. 13, 2016. Available at: <u>http://www.energizect.com/sites/default/files/R4_HES-</u> HESIE%20Process%20Evaluation%2C%20Final%20Report_4.13.16.pdf.
- [3] ERS, Inc. <u>C1641</u>: Impact Evaluation of the Business and Energy Sustainability Program, draft report, Jul. 3, 2018. Available at: <u>https://www.energizect.com/connecticut-energy-efficiency-board/evaluation-reports.</u>

Abbreviations/Acronyms

Symbol	Description (See Note [1])	Units
А	Amperage (of fan)	Amps
А	Area	ft², in²
AA	Hartford kWh Savings Factor from Pilot	kWh/1,000 Btu
ABTU	Annual Btu Savings	Btu/yr
AC	Air Conditioning	
AC	Annual Cooling Energy Usage	kWh/yr
ACCF	Annual Natural Gas Energy Savings	ccf/yr
ACOP	Average Coefficient of Performance	
ADET	Annual Differential Electrical Energy Savings per Ton	kWh/Ton/yr
ADHW	Annual Domestic Water Heating Load	Btu/yr
AEC	Annual Electric Cooling Usage per ft ²	kWh/ft²/yr
AEH	Annual Electric Heating Usage per ft ²	kWh/ft²/yr
AF/BI	Air Foil/Backward Inclined Fan	
AFUE	Annual Fuel Utilization Efficiency	
AGU	Annual Gas Usage per ft ²	ccf/ ft ² /yr
AH	Annual Heating Energy Usage	kWh/yr
AKW	Average Hourly Demand Savings for both Summer and Winter	
AKWH	Annual Gross Electric Energy Savings	kWh/yr
AOG	Annual Oil Savings	Gallon/yr
AOU	Annual Oil Usage per ft ²	gal/ft²/yr
APG	Annual Propane Savings	Gallon/yr
APU	Annual Propane Usage per ft ²	gal/ft²/yr
ASF	Annual Savings Factor	kWh/ton
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning	
	Engineers	
AV	Adjusted Volume	ft ³
BB	Hartford kW Savings Factor from Pilot	kW/1,000 Btu
BCR	Benefit Cost Ratio	
BER	Total Annual Clothes Washer Btu Equivalent Energy Reduction	Btu/yr
BHP	Brake Horsepower (motor load)	
BI	Backward Incline (Fan)	
BIY	Baseline Implementation Year	
BTU	British Thermal Unit	Btu
BTUH	Heat Transfer Rate of Ducting	Btu/hr/100 ft ²
C&I	Commercial and Industrial	
C&LM	Conservation and Load Management	
CAC	Central Air Conditioning	
CAP	Capacity of the Equipment	Btu/h or Ton
CC	Bridgeport kWh Savings Factor from Pilot	kWh/1,000 Btu

Table A7-1: Abbreviations and Acronyms

Symbol	Description (See Note [1])	Units
ccf, CCF	100 Cubic Feet, Quantity of Natural Gas	100 Cubic Feet
CDD	Cooling Degree Days for CT	603
CEEF	Connecticut Energy Efficiency Fund	
CF	Seasonal Coincidence Factor	
CFL	Compact Florescent Light	
CFM	Cubic Feet per Minute, Air Flow Rate	ft³/min
CHWP	Chilled Water Pump	
CL&P	Connecticut Light and Power	
COP	Coefficient of Performance	
CWP	Condenser Water Pump	
d	Duration	minutes
D	Density	lb/Gal
D	Dimension (height or width)	inches
Days	Annual Days of Use	Days/yr
DD	Bridgeport kW Savings Factor from Pilot	kW/1,000 Btu
DEEP	Department of Energy and Environmental Protection	
DHW	Domestic Hot Water	
DHWH	Domestic Hot Water Heater	
DI	Annual Savings per ft ² of Duct Insulation	
DOE-2	Computer Energy Simulation Tool	
DP	Power Reduction Factor	%
DP	Drying Proportion of Clothes Washer Energy	%
DPUC	Department of Public Utility Control	
DRIPE	Demand Reduction-Induced Price Effects	
DSF	Seasonal Demand Savings Factor	kW/ton
E	Energy Use Rate	
ECM	Electronically Commutated Motor	
EE	Efficiency Conversion Factor	
EEB	Energy Efficiency Board	
EER	Energy Efficiency Ratio	
EF	Energy Factor (Dehumidifier, Water Heater)	L/kWh/%
EF	Efficiency Factor	
EF	Heating System Efficiency	
EFF	Rated Motor Efficiency	
EFLH	Equivalent Full Load Hours	hours
EKWH	Estimated Annual Electric Usage with Increase in Production	
EUL	Effective Useful Life	years
F	Fraction of Lighting Heat Affecting Cooling	
F	Factor	various
FC	Forward Curved Fan	
FCM	Forward Capacity Market	
FHLE	Fryer Heavy Load Efficiency	

Symbol	Description (See Note [1])	Units
FIR	Fryer Idle Energy Rate	Btu/hr
FLH	Annual Full Load Hours	Hr/yr
FPC	Fryer Production Capacity	Lbs/hr
FPE	Fryer Preheat Energy	Btu
FR	Free-rider	
ACCF	Annual Gas Savings	ccf/yr
G	Estimated Lighting Energy Heat to Space Based on Modeling	
GPH	Average Peak Gallons per Hour	Gal/hr
gpm	Gallons Per Minute	
GPY	Gallons (of water) per Year	Gal/yr
GSHP	Ground Source Heat Pump	
H, h	Hours (annual or daily)	hours
HAP	Computer Energy Simulation Tool	
HDD	Heating Degree Days for CT	۴F
HF	Heating Factor	Btu/ft²/yr
HL	Heat Loss Savings per Linear Foot	Btu/hr/ft
HP	Horsepower (nameplate)	
HPWH	Heat Pump Water Heater	
HR	Ice Harvest Rate for Ice-Cube Machines	
HR	Annual Electric Energy Usage Dependent on Hours of	kWh/yr
	Production	.,
HR	Percent Heating Not Using Backup Electric Resistance	%
Hrs	Operating Hours per Day	Hr/day
HSPF	Heating Seasonal Performance Factor	· · ·
HVAC	Heating, Ventilation, and Air Conditioning	
HWP	Hot Water Pump	
IGV	Inlet Guide Vane Fan Control	
IND	Annual Electric Energy Usage Independent of Production	kWh/yr
IPLV	Integrated Part Load Value	EER or kW/ton
ISO-NE	Independent System Operator New England	
kW	Electric Demand, kilowatts	1,000 Watts
kW	Fixture Input kW, Total Rated Power Usage of Lighting Fixtures	kW
kWh	Kilowatt-Hour	kWh
KWH	Annual Electric Energy Usage	kWh/yr
KWHSF	Annual kWh Savings Factor Based on Typical Load Profile for	
	Application	
lbs	Pounds (Weight)	lbs
L	Ballast Location Factor	
LBS	Pounds of Food Cooked per Day	Lbs/day
LKWH	Lifetime kWh Savings	kWh
LI	Limited-Income Sector	
LN	Natural Log	

Symbol	Description (See Note [1])	Units
LO	Lost Opportunity	Í
Load	Peak Heating Load on the Gas Boiler or Furnace	Btu/hr
LPD	Lighting Power Density	Watts/ft ²
M&V	Measurement and Verification	
MBH	Thousands of Btu per Hour	1,000 Btu/hr
MEF	Clothes Washer Modified Energy Factor	ft ³ /kWh/ cycle
MMBtu	One Million of British Thermal Units	1,000,000 Btu
MP	Machine Proportion of Clothes Washer Energy	%
MW	Megawatt a Unit of Electric Demand Equal 1,000 Kilowatt	
Ν	Production Rate	
Ν	Number of	
n	Fixture Number	
NAAQS	National Ambient Air Quality Standards	
NLI	Non-Low-Income Sector	
Nr	Nameplate Rating of Baseboard Electric Resistance Heat	kW
0	Quantity of Fixtures that have Occupancy Sensors	
OHLE	Oven Heavy Load Efficiency	%
OIR	Oven Idle Energy Rate	Btu/h
OPC	Oven Production Capacity	Lbs/h
OPE	Oven Preheat Energy	Btu
O&M	Operation and Maintenance	
Р	Heating Penalty and Recovery Adjustment	%
Р	Potato Production Capacity	Lbs/h
PAA	Percent of Facilities' Energy Use Affected by PRIME	,
PD	Peak Day Savings for Gas Measures	ccf
PD	Annual Electric Energy Usage Dependent on Production	kWh/yr
	Quantity	, ,
PDF	Peak Day Factor (Gas)	
PDHW	Peak Hour Hot Water Load	Btu
PF	Peak Factor	kW/kWh
Pf	Power Factor	
PkW	kW Demand Savings	kW
PSC	Permanent Split Capacitor	
PSD	Program Savings Documentation	
PTAC	Package Terminal Air Conditioner	
PTHP	Package Terminal Heat Pump	
r	Climate Adjustment Ratio	
R	R Value is a Measure of Thermal Resistance	ft ² x h x ⁰ F / Btu
Ratio	Ratio of Heating Capacity to Cooling Capacity	
REM	Residential Energy Modeling Software or Results	
RNC	Residential New Construction Sector	
RP	Retail Products Sector	

Symbol	Description (See Note [1])	Units
RTU	Roof Top Unit	
RUL	Remaining Useful Life	Years
S	Savings	Varies
S	C&I Lighting Annual kWh Savings	kWh
SA	Seasonal Efficiency Adjustment	%
Savings Fraction	Fraction of Base-Case Consumption Saved with Low-Intensity	
	Radiant Heaters	
SAWC	Steamer Average Water Consumption Rate	Gal/h
SEER	Seasonal Energy Efficiency Ratio	
SF	Area	Square Feet
SF	Savings Factor	
SHLE	Steamer Heavy Load Efficiency	%
SIR	Steamer Idle Energy Rate	Btu/h
size	Capacity (Volume)	ft ³ , pints/day
SKF	Summer Factor	kW/ft ²
SKW	Seasonal Summer Peak Summer Demand Savings	kW
Sleeve	Unit without Louvered Sides	
SLR	Standby Loss Rate	Btu/hr
SMB	Small Business	
SO	Spill-Over	
SPC	Steamer Production Capacity	Lbs/h
SPCS	Steamer Percent of Time in Constant Steam Mode	%
SPE	Steamer Preheat Energy	Btu
Т	Temperature	°F
TON	Capacity of the Equipment, Tons	12,000 Btu/h
TRACE	Computer Energy Simulation Tool	
UDRH	User Defined Reference Home	
UI	United Illuminating	
V	Volts of Existing Fans	Volts
V	Volume	ft ³
VAV	Variable Air Volume	
VFD	Variable Frequency Drives	
W	Width	ft
Watt, W	Wattage	Watt
Watt₄	Delta Watts	
WCS	Electric Cooling Energy Savings from Wisconsin Study	kWh
WF	Water Factor	Gal/ft ³
WH	Water Heater, Water Heating	
WHS	Electric Heating Energy Savings from Wisconsin Study	
WICDD	Cooling Degree Days for WI	
WIHDD	Heating Degree Days for WI	
Window	Unit with Louvered Sides	

Symbol	Description (See Note [1])	Units
WKW	Seasonal Winter Peak Demand Savings	kW
WP	Water Heating Proportion of Clothes Washer Energy	%
WPF	Winter Peak Factor	W/kWh
WSHP	Water Source Heat Pump	
YR	Year	
ΔkW	Reduction in Power for Each Light	kW
ΔΤ	Delta (or Differential) Temperature	۴F
ηb	Base Case Efficiency	
ηр	Proposed Case Efficiency	

Subscripts

Symbol	Description (See Note [1])	Units
…А	Actual/Installed Unit	
····a	After PRIME	
···b	Baseline Unit	
•••BD	Blower Door Flow Rate Reading Performed at 50 Pa	Cubic Feet per Minute
···BIN	Temperature BIN Hours	
•••C	Cooling	
CAC	Central Air Conditioning	
····CDH	From CDH HVAC study	
d	Number of Hours that Piece of Equipment is Expected to Operate per Day	h
۵	Delta	
dp	Double Pane Window	
door kit	Door Kit, Door Sweep	
DS	Duct Sealing Flow Rate Reading Performed at 25 Pa	Cubic Feet per Minute
•••E	Electric Energy	
•••e	Existing (e.g., unit, production rate, etc.)	
•••es	ENERGY STAR	
•••ES 09	ENERGY STAR 2009 unit	
···fed std	Federal Standard Unit	
G	Natural Gas	
gasket	Air Sealing Gasket	
h	Based on Billing History	
Н	Heating	
•••HP	Heat Pump	
····HVAC	HVAC Motor	
···hw	Hardwired Light Fixtures	

Symbol	Description (See Note [1])	Units
····i	Incoming	
···i	Installed Unit	
ic	Interactive Cooling	
L	Lighting	
LI	Low-Income Sector	
LO	Lost Opportunity Measure	
lpd	Lighting Power Density	
lt	Life Time	
M	Motors	
N	Non-HVAC Applications	
NLI	Non-Low-Income Sector	
0	Oil	
0	Others	
••••OS	Occupancy Sensors	
P	Process	
P	Propane	
post	Final Reading	
pre	Initial Reading	
•••R	Electric Resistance	
R	Refrigeration	
···ratio	Ratio between Low-Efficiency Value and High-Efficiency Value	
retire	Retirement Portion	
···retro	Retrofit Portion	
retrofit	Retrofit Portion	
s	Summer	
sealing	Caulking, Sealing, Polyethylene Tape	foot
total	Total, Sum	
W	Water Heating	
wop	Without PRIME	
•••wp	With PRIME	
wt	Winter	
wx	Weatherstrip, Repair	
y	Number of Hours that Piece of Equipment is Expected to Operate per Year	h

Changes from Last Version

No changes.

Notes

[1] Many of these terms have more complete definitions in the Glossary section.