



R1706 Residential Appliance Saturation Survey & R1616/R1708 Residential Lighting Impact Saturation Studies

Draft Report June 28, 2019

SUBMITTED TO: Connecticut Energy Efficiency Board Lisa Skumatz, Ralph Prahl, and Bob Wirtshafter, EEB Evaluation Administrators

SUBMITTED BY: NMR Group, Inc.

# Abstract

The *R1706 Residential Appliance Saturation Survey (RASS)* and *R1616/R1708 Lighting Impact Saturation* studies were based on web surveys with 2,426 Eversource and United Illuminating (the Companies) electric customers and follow-up on-site verification visits with 227 of those customers.<sup>1</sup> With the goal of developing an inventory of residential end uses and building characteristics, the study produced an Excel database which contains all primary research data and detailed analyses. Analyses include adjustment factors which were calculated based on differences between self-reported data and on-site observations (to correct for self-reported data errors). As summarized in this report, results often reinforced current program offerings and directions outlined in Connecticut's 2019 to 2021 plan or implied additional tactics to save energy:

- Findings underscore the relevance for programs to support near-term strategic electrification goals in Connecticut[GR1]. Most customers rely on natural gas/propane (48%) or fuel oil (40%) as their primary heating fuel. Similarly, over two-fifths of customers rely on natural gas/propane (49%) or fuel oil (34%) for water heating. Heat pump water heaters were uncommon, but nearly one-half of single-family homes could have technically accommodated them.
- 2. Results emphasize the value of the Companies' current support of smart learning thermostats [GR2] which are less reliant on consumer knowledge and behavior. Their penetration is low (5%), and customers demonstrated a general lack of understanding of thermostats and programmable features on programmable models.
- 3. Supporting ENERGY STAR®-qualified appliances is still relevant. ENERGY STAR saturation was low among new [GR3]appliances.
- 4. Secondary refrigerators were present in one in five homes, which may indicate a need to explore the cost-effectiveness of appliance recycling programs.
- 5. The Companies' support of advanced power strips (APS) through its E-Commerce Platform is likely worthwhile. Despite ample opportunities for employing APS, relatively few customers (4%) had them. Nearly all homes had at least one set of electronics with peripherals devices based around a TV or PC, yet they were rarely plugged into an APS. [GR4]
- 6. While LED saturation has increased substantially since 2012, the study reveals considerable opportunity for additional LED adoption: 36% of sockets have inefficient bulbs and 60% of bulbs in storage are inefficient. While these findings may indicate that continued promotion of ENERGY STAR LEDs is warranted, federal standards and naturally occurring market adoption may present risk to continued program interventions in the form of reduced baseline.

This study also examined weatherization in single-family homes, but complications in comparability between a study <u>done in 2011</u> and these 2018 results implied the need to

<sup>&</sup>lt;sup>1</sup> In partnership with the *R1705/R1609 Multifamily Baseline and Weatherization Opportunity* 



commission a more comprehensive weatherization study to accurately assess the current and changing state of single-family home weatherization in Connecticut.



# **Table of Contents**

| EXECUTIVE SUMMARY                        |
|------------------------------------------|
| Methodology                              |
| HEATING AND COOLING                      |
| THERMOSTATS                              |
| WATER HEATING                            |
| APPLIANCES                               |
| CONSUMER ELECTRONICS                     |
| LIGHTING                                 |
| MISCELLANEOUS END USES                   |
| Building Characteristics                 |
| UPSTREAM LIGHTING NET-TO-GROSS           |
| PROGRAM PARTICIPATION AND ATTITUDES      |
| SECTION 1 INTRODUCTION                   |
| 1.1 STUDY OBJECTIVES                     |
| 1.2 REPORT ORGANIZATION                  |
| SECTION 2 METHODOLOGY                    |
| 2.1 DATA COLLECTION INSTRUMENTS          |
| 2.2 FIELDING AND SAMPLING                |
| 2.3 ANALYSIS                             |
| 2.3.1 Weighting                          |
| 2.3.2 Adjustment Factors                 |
| 2.4 DATABASE DEVELOPMENT                 |
| SECTION 3 END-USE RESULTS                |
| 3.1 HEATING AND COOLING                  |
| 3.1.1 Penetration                        |
| 3.1.2 Efficiency and Age                 |
| 3.2 THERMOSTATS                          |
| 3.3 WATER HEATING                        |
| 3.3.1 Penetration                        |
| 3.3.2 Efficiency and Age <u>36</u> 34    |
| 3.3.3 Heat Pump Water Heater Feasibility |
| 3.4 APPLIANCES                           |



| 3.4    | .1 Pe  | enetration                                    | <u>39</u> 37             |
|--------|--------|-----------------------------------------------|--------------------------|
| 3.4    | .2 Ef  | fficiency and Age                             | <u>40</u> 38             |
| 3.4    | .3 Ha  | abits                                         | <u>42</u> 40             |
| 3.6    | Cons   | SUMER ELECTRONICS                             | <u>44</u> 4 <del>2</del> |
| 3.6    | 6.1 P€ | enetration                                    | <u>44</u> 4 <del>2</del> |
| 3.6    | 6.2 Ac | dvanced Power Strips                          | <u>46</u> 44             |
| 3.7    | LIGHT  | TING                                          | <u>49</u> 47             |
| 3.7    | ′.1 Cr | ross-Year Comparison                          | <u>50</u> 4 <del>8</del> |
| 3.7    | '.2 Re | egional Comparison                            | <u>50</u> 4 <del>8</del> |
| 3.8    | Misc   | ELLANEOUS END USES                            | <u>52</u> 50             |
| SECTIO | N 4    | Building Characteristics                      | <u>54</u> 52             |
| 4.1    | Build  | DING SHELL                                    | <u>54</u> 52             |
| 4.2    | DUCT   | гs                                            | <u>57</u> 55             |
| 4.3    | Type   | , Age, and Size                               | <u>58</u> 56             |
| SECTIO | N 5    | DEMOGRAPHICS                                  | <u>61</u> 59             |
| APPEND | DIX A  | METHODOLOGY DETAILS                           | <u>67</u> 65             |
| A.1    | FIELD  | DING AND SAMPLING                             | <u>67</u> 65             |
| A.2    | END-   | USE AND ATTRIBUTE LIST                        | <u>71</u> 69             |
| APPEND | DIX B  | ANALYSIS DETAILS                              | <u>77</u> 75             |
| B.1    | WEIG   | SHTING                                        | <u>77</u> 75             |
| B.3    | Adju   | ISTMENT FACTORS                               | <u>79</u> 77             |
| APPEND | DIX C  | DATA PROCESSING                               | <u>82</u> 80             |
| C.1    | WEB-   | -SURVEY DATA CLEANING                         | <u>82</u> 80             |
| C.2    | ON-S   | SITE VERIFICATION DATA CLEANING               | <u>82</u> 80             |
| C.3    | BILLI  | NG DATA ATTACHMENT                            | <u>83</u> 81             |
| APPEND | DIX D  | LIGHTING SATURATION, PENETRATION, AND STORAGE | <u>84</u> 82             |
| D.1    | SATU   | JRATION                                       | <u>84</u> 82             |
| D.2    | Pene   | TRATION                                       | <u>88</u> 86             |
| D.4    | STOR   | RAGE BEHAVIOR                                 | <u>89</u> 87             |
| APPEND | DIX E  | UPSTREAM LIGHTING NET-TO-GROSS                | <u>90</u> 88             |
| E.1    | HISTO  | ORICAL LED SATURATION AND PROGRAM SUPPORT     | <u>90</u> 88             |
| E.1    | I.1 Co | omparison Areas                               | <u>91</u> 89             |
| E.1    | 1.2 Pr | rogram Support Comparison                     | <u>93</u> 91             |



| E.1    | .3 Annual Saturation Interpolation              | <u>94</u> 92           |
|--------|-------------------------------------------------|------------------------|
| E.1    | .5 Annual Stored LED Values                     | <u>95</u> 93           |
| E.2    | NET-TO-GROSS CALCULATIONS                       | <u>95<del>93</del></u> |
| E.2    | .1 Market Gains                                 | 96 <del>9</del> 4      |
| E.2    | .2 Net-to-Gross Estimates                       | <u>97</u> 95           |
| APPEND | IX F PROGRAM PARTICIPATION AND ATTITUDES        | <u>98</u> 96           |
| F.1    | PROGRAM PARTICIPATION                           | <u>98</u> 96           |
| F.3    | AWARENESS AND ATTITUDES ON ENVIRONMENTAL ISSUES | <u>)2</u> 100          |





# Executive Summary [GR5]

The following report includes results from the *R1706 Residential Appliance Saturation Survey* (*RASS*) and *R1616/R1708 Lighting Impact Saturation* studies. The studies resulted in (1) an inventory of residential end-uses, including heating and cooling equipment, water heating, appliances, consumer electronics, and lighting; (2) a characterization of customer homes, including building characteristics; and (3) estimates of lighting saturation and upstream program net-to-gross (NTG). In partnership with the *R1705/R1609 Multifamily Baseline and Weatherization Opportunity* study research, these studies leveraged results from 2,426 web surveys and 227 follow-up on-site verification visits with Eversource and United Illuminating (the Companies) residential electric customers. In addition to this report, which provides an overview of the study methodology and an analysis of results, the study produced an Excel database (RASS Database) that includes all primary research data points and detailed analyses, along with a database user guide.

### METHODOLOGY

This section summarizes the research methodology described in Section 2:

**Topics.** The web survey asked about appliances, consumer electronics, HVAC, water heating, building characteristics, demographics, program participation, and attitudes towards environmental issues. The on-site visits took place for a subset of web survey respondent households to verify select self-reported data and collect additional information on various end uses, including lighting, shell characteristics, efficiency levels, and equipment ages.

**Sampling and fielding.** The sample frame consisted of 30,300 customers from the Companies' residential electric customer databases. Outreach through letters and emails yielded 2,426 completed web surveys (R1706) and 90 single-family (R1616/1708) and 137 multifamily (R1705/R1609) on-site verification visits at the homes of a subset of survey respondents.

**Weighting.** The analysis applied proportional weights that accounted for income, program participation, and dwelling type. However, results coming solely from single-family on-site visits used dwelling-age-based weights since the on-site sample overrepresented pre-1950s homes.

Adjustment factors. Using a comparison between self-reported (web-survey results) and observed (on-site results) end-use equipment, the analysis developed adjustment factors – ratios – to correct self-reported data among the full survey sample. Adjustment factors were applied in cases where on-site verified results differed statistically significantly from the web-survey results at the 90% confidence level.

**Database development.** Web-survey and on-site verification data were combined with anonymized respondent billing data in an Excel database to provide additional details and breakdowns not presented in this report. Appendix G (provided separately) includes a database user guide.



**Benchmarking.** This study undertook benchmarking efforts where appropriate:

- Non-lighting. In 2011, the Connecticut Energy Efficiency Board (EEB) commissioned a comprehensive weatherization study to assess Connecticut's single-family homes. While the 2011 study relied solely on on-site visits, this 2018 study used a combination of web-survey and on-site visit results to develop adjustment factors to estimate penetration (the percentage of homes with the end use) and quantities for non-lighting end uses. In instances where data were collected only on site (equipment efficiency levels, equipment ages, and building shell data points, primarily) not through the web survey this study compares results to those of 2011, where possible.
- Lighting. Massachusetts and National Grid Rhode Island have commissioned lighting market assessments in recent years. This study used those results – and results from the 2012 Connecticut lighting market assessment – to contextualize the effectiveness of Connecticut's lighting program, primarily in terms of saturation (the percentage of all sockets filled with a specific bulb type), and to estimate NTG.

The following sections present the key findings and offer some considerations for planning.

### HEATING AND COOLING[GR6]

### **Findings**

**Heating.** Based on web-survey responses and on-site observations, the most common primary heating fuels were natural gas (43%) and fuel oil (40%). While single-family customers were most likely to use fuel oil as their primary heating fuel (45%), multifamily customers were most likely to use natural gas (54%). Heating systems were most often oil boilers (22%), gas furnaces (21%), and gas boilers (20%). On-site observations showed that, on average, in single-family homes, boilers were 17 years old and furnaces were 12 years old.

**Cooling.** Results from the web-survey and on-site visits show that nearly one-half of customers (49%) had room air conditioners for their cooling needs, while four in ten (40%) had central air conditioners.<sup>2</sup> Only 2% of homes had no cooling equipment. On-site observations found that, among single-family homes, room air conditioners were 12 years old and central air conditioners were 14 years old, on average.

**Heat pumps.** Heat pump penetration was low based on web-survey results and on-site visits. Just 4% of customers used central heat pumps and 3% used ductless mini-split heat pumps (DMSHP) for their heating needs; only 2% had heat pumps for cooling.<sup>3</sup> [GR7]

**Efficiency.** Among common heating systems assessed while on site in single-family homes, the most noticeable difference between observed efficiency and federal standards was for natural gas furnaces (AFUE of 88.4 versus 80.0). [GR8]

<sup>&</sup>lt;sup>3</sup> It is surprising that heat pump usage for heating was slightly higher than for cooling, yet sample sizes (number of heat pumps) were too small to draw conclusions about heat pump usage behavior. For a better assessment see DNV GL's 2019 *R1617 Connecticut Residential Ductless Heat Pumps Market Characterization Study*.



<sup>&</sup>lt;sup>2</sup> As confirmed by on-site data, some of these central air conditioners may be air source heat pumps, which are likely indistinguishable from central AC systems to most homeowners.

Section 3.1 provides additional details regarding heating and cooling end uses.

#### Considerations

The 2019-2021 Plan outlines the Companies' near-term plan to pilot heat pump incentives for customers with fuel oil or propane heating (and references the pursuit of strategic electrification). The low penetration of heat pumps and prevalence of fossil fuel-based heating presented here support the pilot's relevance. The <u>Board and the</u> Companies can consider this and the results from the recently released draft of the *R1617 Ductless Heat Pump Market Characterization* study and upcoming *R1965 HP/HPWH Baseline and Potential Assessment* study as they assess the effectiveness of the pilot and determine their long-term approach to supporting heat pumps.

### THERMOSTATS

### Findings

**Penetration.** According to web-survey responses and on-site observations, more than two-fifths of customers (45%) had programmable thermostats, yet standard thermostats (62%) were still more common. Smart (5%) and not smart (1%) wireless (Wi-Fi) thermostats had barely penetrated the market; during the web survey, roughly three-quarters of respondents indicated that they did not know if they had either of these. On that note, thermostat types all required adjustment factors, implying a general lack of <u>consumer</u> understanding of thermostat features.

**Habits.** From December through February, depending on the time of day, web-survey respondents said they set their thermostats to between 66°F and 68°F, on average. Those who had cooling systems, set their thermostats, on average, to between 70°F and 71°F from June through August. Comparing maximum settings with minimum settings, the typical respondent varied their temperature set points by 2°F or 3°F on a given day. Nearly one-third of respondents with programmable thermostats (30%) reported in the web survey that they did not actually program them.<sup>4</sup>

Section 3.2 presents more information on this topic.

### Considerations

Lack of understanding regarding thermostat features and setup observed as part of this study underlines the potential importance of smart learning thermostats included as part of the Companies 2019 to 2021 plans as expected savings from smart thermostats are less dependent on customer setup and understanding. However, the decision to carry forward thermostat efforts should be predicated on evaluation results that demonstrate properly setup thermostats produce energy savings – which this study did not address.

http://www.ripuc.org/eventsactions/docket/6.%20National%20Grid%20RI2311%20RASS%20Final%20Report%2011 OCT2018.pdf



<sup>&</sup>lt;sup>4</sup> This is somewhat lower than in Rhode Island where 40% of customers with programmable thermostats did not program them. Source: NMR. "National Grid Rhode Island Residential Appliance Saturation Survey (Study RI2311 Report." October 11, 2018.

# WATER HEATING

### Findings[GR9]

As detailed in Section 3.3, customers most often had natural gas water heaters (42%) and about one-third of customers (34%) had fuel oil water heaters (according to web-survey responses and on-site visit results). Fuel oil water heaters were considerably more common among single-family customers (58%) than multifamily customers (2%). Regardless of fuel type, tankless and combination water heaters were uncommon and storage tank water heaters were more common. Heat pump water heaters (HPWHs) were very uncommon: only 1% of customers had them. Based on on-site observations, nearly one-half of single-family homes (47%) could have technically accommodated them – the limiting factor was most often insufficient space (26%). [GR10]

Water heaters observed on site in single-family homes were 11 years old, on average.

#### Considerations

The high-technical feasibility of HPWHs and their low penetration supports the relevance of the Companies' current incentives for them.

# **A**PPLIANCES

### **Findings**

**Laundry.** More than three-quarters of homes had clothes washers (79%) and dryers (77%) based on web survey and on-site results [GR11]. According to survey responses, the average customer used warm or hot water for more than one-half (52%) of their loads of laundry. On average, websurvey respondents reported running 4.5 loads of laundry per week, but this was not verified through on-site data collection. In contrast, the 2018 Connecticut Program Savings Document (PSD) specifies 295 loads per year, aligning with the default value that the ENERGY STAR appliance calculator uses – 5.7 loads per week.

**Dishwasher.** Without differentiation between single- and multifamily, nearly three-quarters (73%) of homes had a dishwasher according to web-survey responses and on-site observations. Web-survey respondents reported running 3.3 dishwasher cycles per week, yet this was not verified on site. The PSD specifies 215 cycles per year, equivalent to the ENERGY STAR assumption of 4.1 cycles per week. Compared to other appliances inspected on site in single-family homes, dishwashers had high ENERGY STAR saturation – more than two-thirds were ENERGY STAR-labeled (73%) and two-fifths (40%) were both ENERGY STAR-labeled and manufactured in the last six years.

**Refrigerator.** One in five customers had more than one refrigerator according to web-survey and on-site results. Refrigerators inspected on site in single-family homes were 13 years old, on average.

For more details on appliances, see Section 3.4.

### Considerations

Given the proportion of homes with more than one refrigerator, the Companies may wish to explore the cost-effectiveness of an appliance recycling program.



- Study X1931 In-Depth PSD Review should consider updating PSD assumptions of the number of loads of laundry or dishwasher cycles that customers run. However, in that decision-making process, the study should weigh the reliability of self-reported values (versus metered values).
- The relatively low saturation of new ENERGY STAR models supports the relevance of the Companies' incentives for ENERGY STAR appliances. [GR12]
- Educating customers about the benefits of using cold water for washing clothes could be worthwhile.

# **CONSUMER ELECTRONICS**

### **Findings**

**Penetration.** This study measured the *penetration* of consumer electronics solely through web surveys. Laptop computers (85%) and tablets (79%) surpassed desktop computers (59%) in terms of penetration. The average home had 1.45 laptop computers, 1.33 tablets, and 0.75 desktop computers. Almost two-fifths of customers (39%) had automation devices (e.g., Amazon Echo, Google Home, Apple Home Pod, etc.) – as with most consumer electronics, penetration was higher in single-family homes (41%) than in multifamily homes (29%). Customers with automation devices most often reported that they had thermostats (45%), [GR13] audio or Bluetooth devices (27%), or lighting (23%) connected to them.

Advanced power strips (APS). The study assessed penetration of APS both on site and through the web surveys. Comparing the on-site results with the web-survey results implied customer confusion about APS. Roughly three-fifths (61%) of web-survey respondents reported having APS installed in their homes, but on-site visits revealed that penetration was only 4%. It may be that customers mistook surge protectors and simple power strips without advanced features for APS given their visual similarities. On-site visits revealed a plethora of opportunities for APS:

- Nearly all homes (97%) had at least one set of electronics with peripheral devices either based around a television or a computer.
- Most homes (94%) had televisions with peripheral devices (i.e., home entertainment centers [HECs]), with roughly two peripheral devices each, yet only 2% of HECs observed on site were connected to an APS. Excluding set-top-boxes (STBs), which are recommended to be plugged into the *always-on* outlet of APS, somewhat fewer homes (87%) had at least one HEC. Nearly one-third of televisions (30%) had three or more peripheral devices.
- Roughly one-half (51%) of homes had at least one computer with peripheral devices (i.e., computer hub). Only 5% of computer hubs were connected to an APS, yet the average home had 1.3 opportunities to use APS with their computers. About one-third of computers (34%) had three or more peripheral devices.

Section 3.5 presents all results.



#### Considerations

With such low penetration and awareness, as well as many opportunities for employing them in the average home, it appears that the Companies' support of APS through its E-Commerce Platform is worthwhile. Perhaps greater education about what distinguishes them from surge protectors is needed too[GR14].

### LIGHTING

### **Findings**

**Cross-year comparison.** Energy-efficient lighting in Connecticut households has shown a dramatic increase in saturation (the percentage of all sockets filled with a specific bulb type) of LEDs. Between 2012 and 2018, LED saturation increased more than tenfold (2% to 26%) according to on-site visit results. During the same period, CFL saturation increased marginally from 26% to 29% and inefficient (incandescent and halogen) saturation decreased from 58% to 36%. Similarly, the proportion of stored bulbs that were incandescent decreased dramatically between 2012 and 2018 (down from 64% to 46%). However, the proportion of incandescent bulbs in storage was still more than double the shares represented by LEDs (20%) and CFLs (20%). In Massachusetts, similar findings regarding bulbs in storage led to evaluators recommending that the Massachusetts PAs *carefully consider what program efforts can be made to encourage customers to replace inefficient bulbs before failure or remove inefficient bulbs from storage. The PAs may want to consider further educational efforts, as well as a bulb buyback program, to persuade people to change out inefficient bulbs before they burn out, fill sockets with LEDs, and remove inefficient bulbs from storage. See the MA RLPNC 18-10 2018-19 Residential Lighting Market Assessment Study for more details.* 

**Regional benchmarking.** To help provide context to the changes in saturation observed in Connecticut, this report benchmarks against recent saturation studies in the Northeast that took place in and around the time that the Connecticut on-site visits were underway. Table 1 lists those comparable studies and their timing relative to Connecticut's effort. Essentially, Rhode Island visits took place concurrently with Connecticut's and the Massachusetts and New York visits took place about six months before and six months after the Connecticut visits. For ease of comparison, this study reports the averages of the 2017 and 2018 visits for Massachusetts and New York.<sup>5</sup> Appendix D provides the saturation estimates for each visit separately.

<sup>&</sup>lt;sup>5</sup> Simple average of 2017 and 2018 estimates – rounded to nearest whole percent.



|                  | (                          | <b>,</b>         |                            |
|------------------|----------------------------|------------------|----------------------------|
| Area             | October – December<br>2017 | April – May 2018 | October – December<br>2018 |
| Connecticut      |                            | $\checkmark$     |                            |
| Rhode Island     |                            | $\checkmark$     |                            |
| Massachusetts    | $\checkmark$               |                  | $\checkmark$               |
| Upstate New York | $\checkmark$               |                  | $\checkmark$               |

# Table 1: Lighting Saturation On-Site Visit Timing

(Conducted by NMR)

LED saturation in Connecticut (26%) was,

- Somewhat lower than in Rhode Island (33%)
- Somewhat lower than in Massachusetts (31% average of 2017 and 2018 visits)
- Higher than in New York (18% average of 2017 and 2018 visits)

It should be noted that CFL saturation in Connecticut (29% in 2018) remained higher than all other areas visited, regardless of the timing of the data collection. Combined CFL and LED saturation was 55% in Connecticut, Rhode Island, and Massachusetts.[GR15]

Like Massachusetts and Rhode Island, Connecticut programs provide incentives only for ENERGY STAR-qualified LEDs (New York does not provide any incentives for lighting). ENERGY STAR-qualified LED saturation was statistically significantly higher in Rhode Island (24%) and Massachusetts (20%) than in Connecticut (12%). ENERGY STAR-qualified LED saturation in New York averaged 8% across the two visits, but it is worth noting that that percentage doubled from 5% to 10% between the 2017 and 2018 visits. LED storage patterns were fairly similar across states.

Appendix D provides the full on-site results of lighting saturation, penetration, and storage and comparisons across time and territories.

### Considerations

Comparisons to other states imply that the Connecticut program may not have as much impact on LED sales as programs in Massachusetts and Rhode Island. While LED saturation has increased considerably in a fairly short time period, two-fifths of sockets still have inefficient lighting installed and only 12% qualify for ENERGY STAR (the program only supports ENERGY STAR products). Moreover, a notable number of inefficient bulbs were in storage. Together, these findings indicate that continued promotion of ENERGY STAR-qualified LEDs may be warranted[GR16]. However, it is important to note that federal standards and naturally occurring market adoption may present risk to continued program interventions in the form of reduced baseline wattages, which would reduce savings.



### **MISCELLANEOUS END USES**

### **Findings**

Photovoltaic (PV) solar panels remain an uncommon end use according to web-survey responses: only 2% of homes had them installed. With an average installed capacity of 7 kW, 14% had energy-storage batteries to accompany their panels. As shown in Section 3.8, most miscellaneous end-uses, such as whole-home generators (6%) – often fueled by propane – also had limited penetration. Respondents listed other equipment in their homes that they estimated used a great deal of energy; most frequently, they mentioned power tools and/or air compressors (2%) and medical equipment (1%).

### Considerations

There is a great deal of space in the market to support solar [GR17] and energy-storage measures.

# **BUILDING CHARACTERISTICS**

### Findings

**Cross-year comparisons.** As noted, in 2011, the EEB commissioned a comprehensive weatherization study (referred to as *R5*) to assess Connecticut's single-family homes.<sup>6</sup> In contrast, the 2018 study's primary goal was to measure end-use saturation, while weatherization assessments were a secondary priority. As such, the designated budget meant a less comprehensive approach in assessing building shell and duct characteristics, so making direct comparisons between the studies is challenging. Specifically, the 2011 study used equipment (such as infrared cameras, blower doors, and duct blasters) and assessed all walls, ceilings, windows, and ducts to measure and characterize area, efficiency level, and material. In contrast, the 2018 study – with a different budget and scope – was limited to assessing "predominant" walls, windows, and ducts. Moreover, the 2011 on-site sample size (n=180) was twice that of 2018 (n=90). Lastly, in 2011, NMR assigned Home Energy Rating System (HERS) index values for all homes visited. With a lower budget in 2018, NMR did not collect all of the data necessary, nor use certified HERS raters, which would have been necessary to assign HERS values to homes.

Insulation rates were the most questionable attribute when assessing differences. After reviewing 2011 raw data, it appeared that 14% of predominant walls had little-to-no insulation, yet in 2018, 23% of predominant walls appeared to have little-to-no insulation. It is unlikely that insulation rates would have decreased, and some of this difference may be due to sampling error or differences in methodological approaches.<sup>7</sup>

**Building shell, windows, and ducts.** In 2018, on-site results indicated that predominant walls in single-family homes were most often insulated with fiberglass batts (FGB) (66%), and

<sup>&</sup>lt;sup>7</sup> As previously mentioned, the 2011 study took a more comprehensive approach to assessing all walls, including using HERS raters to assess all portions of the building shell, and with advanced diagnostics, may have been able to identify instances of degraded insulation that felt like no insulation to technicians probing walls in the 2018 study.



<sup>&</sup>lt;sup>6</sup> NMR. "R5 Single-Family Weatherization Baseline Assessment." June 3, 2014. Accessed at

https://www.energizect.com/sites/default/files/R5-Connecticut%20Weatherization%20Baseline%20Assessment-FINAL%2006-04-14.pdf.

predominant flat and vaulted ceilings were most often insulated with FGB or rockwool (64% and 78%, respectively) – this was not markedly different in 2011. The predominant window type (most common window type in a given home) in most single-family homes was double-pane (85%), and about two-fifths (43%) had low-emissivity (low-E[GR18]) coatings[GR19]. Predominant windows' frames were most often made of vinyl (64%). Basement ducts were uninsulated in roughly one-half of homes. Attic ducts were uninsulated in about one-third of homes. This varied slightly between supply and return ducts.

Section <u>Section 44</u> provides more results.

#### Considerations

- Some unlikely differences over a seven-year period imply the need to commission a more comprehensive weatherization study to accurately assess the current and changing state of home weatherization in Connecticut. The 2018 study included budgetary restrictions that necessitated methodological differences from the 2011 study, limiting the reliability of comparisons.
- Existing housing stock still shows substantial opportunities for savings in terms of improving homes' envelopes and mechanical systems.

# **UPSTREAM LIGHTING NET-TO-GROSS**

### **Findings**

**Program support.** As noted, LED saturation in Connecticut increased exponentially between 2012 and 2018. The increase corresponds with the Companies' increasing levels of support for LEDs: according to program data, in 2013 they supported roughly 430,000 LEDs (upstream and direct install), while in 2018 (through July) they supported 1.8 million LEDs. [GR20]

**Estimates.** This study estimated an overall upstream lighting NTG ratio of 71% (excluding stored bulbs) and 73% (including stored bulbs) for Connecticut for the program period of 2013 through 2018. The NTG algorithm relied on using the number of LEDs installed, in storage, and supported by the Connecticut upstream program as well as comparable installation and storage data for New York (which does not have an upstream LED program) to estimate net gains in LEDs in Connecticut homes. The net gain is equal to the change in installed and stored bulbs found in Connecticut homes minus those found in New York homes divided by Connecticut program sales. Specifically, the estimated net gain in Connecticut was 10.5 million installed LEDs and 0.4 million stored LEDs, cumulatively from 2013 through July 2018. Dividing these by the 14.9 million upstream program-supported LEDs resulted in the NTG ratios of 71% for installed LEDs only and 73% also taking storage into account.[GR21]

All results, including annual NTG estimates, are included in Appendix E.

### Considerations

Because on-site lighting data collection did not occur in Connecticut between 2013 and 2017 and New York data collection also experienced gaps, the analysts interpolated annual saturation and storage estimates from its comparable neighboring state, Massachusetts – which had commissioned annual studies during that time and offered a



similar LED program (referenced above). This raises questions about the validity of the NTG results (i.e., whether they truly reflect the NTG in Connecticut), and for this reason, the analysts urge caution when interpreting the results. [GR22]

### **PROGRAM PARTICIPATION AND ATTITUDES**

### **Findings**

**Participation.** Sixteen percent of web-survey respondents self-reported or confirmed they had participated in one of the Companies energy-efficiency programs at some point in the past two years. [GR23]Nearly two-thirds (64%) of respondents reported having made some type of energy upgrade in the past two years, and roughly the same share (65%) had no plans to do so in the next two years. [GR24]Respondents were very unfamiliar with rebates and financing programs available through Energize CT. When asked to rate their familiarity with "utility rebates" on a scale of 1 to 5, where 1 is *not at all familiar* and 5 is *extremely familiar*, they rated their familiarity 1.7, on average. Almost four-fifths (78%) of those who had made upgrades did not use rebates or financing and those who had used their credit card(s) (15%).

**Attitudes.** Respondents often considered themselves *moderate environmentalists* (45%); when asked about their level of activity in environmental movements, most frequently they thought of themselves as *sympathetic towards the movement, but not active* (42%).

Appendix F presents more findings and context.

#### Considerations

Customers' lack of awareness of rebates and financing options and common lack of plans to improve their homes' energy efficiency suggests that stronger promotion of rebates and financing and benefits of upgrading equipment would be worthwhile.



# Section 1 Introduction

This report presents the results from the *R1706 Residential Appliance Saturation Survey (RASS)* and *R1616/R1708 Lighting Impact Saturation* studies. The studies resulted in (1) an inventory of residential end uses, including heating and cooling equipment, thermostats, water heating, appliances, consumer electronics, lighting, and miscellaneous end uses; (2) a characterization of customer homes, including building characteristics; and (3) estimates of lighting saturation and upstream program net-to-gross (NTG). In partnership with the *R1705/R1609 Multifamily Baseline and Weatherization Opportunity* study research, these studies fielded web surveys and follow-up on-site verification visits with Eversource and United Illuminating (the Companies) residential electric customers. In addition to this report, which provides an overview of the study methodology and an analysis of results, the study produced an Excel database (RASS Database) that includes all primary research data points and detailed analyses, along with a database-user guide.

While NMR fielded the web surveys and conducted 90 on-site verification visits with single-family (1 to 4 units) respondents as part of R1706 and R1616/R1708, ERS conducted an additional 137 on-site verification visits with multifamily (5 or more units) respondents. ERS reports multifamily on-site results in its R1705/R1609 report; however, this report leverages many of those results, too. This report analyzes "on-site-only" results, such as efficiency levels and age, for only single-family homes.[GR25]

# **1.1 STUDY OBJECTIVES**

Using web-based surveys with 2,426 residential customers and follow-up on-site verification visits with 227 of those customers, the studies accomplished several goals:

**Household characterization.** The results established a sector-wide characterization of Connecticut households by researching a select set of end uses, building characteristics, and demographics.

**Database.** Analyses produced a comprehensive database housing all survey and on-site data appended with respondents' billing data. The RASS Database was delivered to the Companies for stakeholders to conduct any additional analysis to meet their varied needs. In other words, it offers anyone the ability to drill down as needed – a more efficient and user-friendly alternative to a report with innumerable tables.

**Lighting market assessment.** The study estimated lighting saturation, other lighting elements (e.g., storage behavior and LED satisfaction), and NTG estimates for upstream lighting.



# **1.2 REPORT ORGANIZATION**

This report includes findings from both the web surveys and on-site verification visits. Table 2 outlines the structure of the report.

| Section                    | Purpose/Contents                                                                                                                                                           |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methodology                |                                                                                                                                                                            |
| Section <u>Section 2</u> 2 | Recounts the methodology undertaken to design the web survey, field and sample for the web-survey and on-site verification visits, analyze data, and develop the database. |
| Appendix A                 | Offers more fielding and sampling details and lists end uses and attributes studied.                                                                                       |
| Appendix B                 | Gives further insight into analytical methods, including weighting, adjustment factors, and weatherization benchmarking.                                                   |
| Appendix C                 | Summarizes the approach for cleaning primary data and attaching billing data to develop the database.                                                                      |
| Results                    |                                                                                                                                                                            |
| Section Section 33         | Analyzes penetration and other key characteristics of the end uses.                                                                                                        |
| Section Section 44         | Presents building characteristics, building shell, and ductwork results.                                                                                                   |
| Section 5                  | Characterizes the sample demographics.                                                                                                                                     |
| Appendix D                 | Summarizes lighting saturation and penetration results.                                                                                                                    |
| Appendix E                 | Summarizes upstream lighting net-to-gross results.                                                                                                                         |
| Appendix F                 | Summarizes program participation and attitudes towards environmental issues.                                                                                               |
| Reference Materials        | (Provided in separate documents)                                                                                                                                           |
| Appendix G                 | Consists of the RASS Database user guide.                                                                                                                                  |
| Appendix H                 | Includes the web-survey instrument.                                                                                                                                        |

### Table 2: Report Organization



# Section 2 Methodology

This section details the study methodology including survey design, fielding, sampling, on-site verification, analysis, and database development.

# 2.1 DATA COLLECTION INSTRUMENTS

The web survey asked about heating and cooling equipment, thermostats, water heating, appliances, consumer electronics, miscellaneous end uses, building characteristics, demographics, program participation, and attitudes towards environmental issues. The on-site visits, performed for a sample of web survey respondents, verified much of this self-reported data and collected additional information on various end uses, including lighting, shell characteristics, efficiency levels, and ages. Appendix A.2 lists the end-uses and attributes that the web survey and on-site verification visits examined and Appendix H (in a separate document) includes the web-survey instrument itself.

# 2.2 FIELDING AND SAMPLING

The Companies provided random samples of residential electric customers pulled from their customer databases, totaling 51,164 customers. The study selected a subset of 30,300 customers for the RASS sample frame.<sup>8</sup> Between December 15, 2017 and April 20, 2018, those customers received letters inviting them to respond to the web survey. In support of the lighting portion of the study, 81 "panel" customers who had participated in the 2016 *R154 LED Lighting study* were also invited to respond.<sup>9</sup>

The study mailed letters in three waves. To monitor the demographic spread of survey responses, response rates for certain sample strata were estimated approximately two weeks after the release of each wave.<sup>10</sup> This allowed the study to selectively sample wave two and three to target any underrepresented strata. Non-responsive customers received email reminders (where email was available). Respondents received a \$10 Amazon gift card for completing the survey. In addition to asking questions about their household, the web survey asked respondents if they were willing to participate in on-site verification visits. Nearly one-half (49%) of the 2,426 web-survey respondents agreed to on-site verification visits in exchange for a \$150 gift card.

The RASS study sought to complete 2,000 web surveys and exceeded this goal, resulting in 2,426 completed web surveys (an 8% response rate) (Table 3). Ninety single-family (1 to 4 units) and 137 multifamily (5 or more units) took part in on-site verification visits.

<sup>&</sup>lt;sup>10</sup> The study identified three population parameters by which to assess representativeness of responses: location, dwelling type, and income level.



<sup>&</sup>lt;sup>8</sup> The planned sample frame expected 20,000 customers. However, after lower than expected response rates from multifamily homes, the approach added 10,300 homes with higher likelihood of being multifamily to the sample frame. <sup>9</sup> The *R154 LED Lighting Study* assessed the residential market for light-emitting diodes (LEDs) in Connecticut and consisted of telephone surveys of a random sample of homes throughout Connecticut and 81 on-site lighting inventories conducted with a subset of those telephone survey respondents.

|                          | Population               | Web Su    | urvey             | On-Site Verification Visits |                   |
|--------------------------|--------------------------|-----------|-------------------|-----------------------------|-------------------|
| Dwelling Type            | Size <sup>1</sup> [GR26] | Completed | Sampling<br>Error | Completed                   | Sampling<br>Error |
| Single-family, 1-4 units | 1,121,767                | 1,749     | 1.8%              | 90                          | 8.5%              |
| Multifamily, 5+ units    | 232,946                  | 677       | 2.8%              | 137[GR27]                   | 6.9%              |
| Total                    | 1,354,713                | 2,426     |                   | 227                         |                   |

### Table 3: Completed Surveys and On-Site Verification Visits

<sup>1</sup> Because the Companies do not comprehensively track dwelling type, the sampling errors rely on U.S. Census Bureau, ACS 2012-2016 data. Proportions are based on occupied housing units.

The Companies'Eversource's (??) participation data indicated that roughly 7% of all residential customers had participated in a program between 2015 and 2017.<sup>11</sup> [GR28] Response rates were slightly higher among participants: 12% of web-survey respondents and 11% of on-site homes (unweighted) participated in the Companies' programs. Participation rates were also strongly skewed by Company. According to the data, UI web-survey respondents were three times as likely to have participated in a program compared to Eversource respondents (24% versus 8%). [GR29]After weighting (described below), participants accounted for 7% of the web-survey sample.

Appendix A.1 recounts additional fielding and sampling steps and considerations.

# 2.3 ANALYSIS

This section discusses (1) how the analysis applied weights to the results and (2) the development and application of adjustment factors.

### 2.3.1 Weighting

As referenced above, sampling addressed three separate studies with unique goals. To support the R1705/R1609 multifamily study, the RASS oversampled multifamily homes so there would be adequate sample for multifamily on-site visits (a larger-scale effort than the *R1616/R1708* single-family on-site visit study). GR30] In addition to adjusting for differences in dwelling types, the weighting scheme adjusted for differences in income and program participation between the websurvey sample and the Census<sup>12</sup> or the Companies' customers. Appendix B.1 presents these weights and details the process of segmenting the population and developing the weights.

As shown in Section 4.3, the single-family on-site sample somewhat overrepresented older homes (pre-1950) as compared to the Connecticut population (42% and 30%, respectively) in Census results; therefore, results drawn solely from on-site visits (versus web-sample-related results), such as equipment age and efficiency level, were weighted by home age.

<sup>&</sup>lt;sup>12</sup> U.S. Census Bureau. ACS 2012-2016.



<sup>&</sup>lt;sup>11</sup> UI could not provide raw customer data for their population, so they provided an estimated participation rate for their population of electric customers. To estimate an overall participation rate among both service territories, the analysis calculated a weighted average by using a 70/30 Eversource/UI split.

### 2.3.2 Adjustment Factors

As described, on-site visits yielded the opportunity to verify web-survey results. Comparing self-reported and observed end-use equipment, the study developed adjustment factors to correct for erroneous self-reported data. For example, if 12% of on-site customers reported an end use in the web-survey, and on-site observations found that 21% of homes had the end use, the analysis would adjust web-survey results by a factor of 1.75 (21% divided by 12%). Adjustment factors were applied only if on-site verified results differed statistically significantly from the web-survey results at the 90% confidence level. For cases where fewer than five on-site homes reported having the end use, adjustment factors were not applied. Note, sometimes when adjustment factors are applied, the penetration and average units per home statistics appear incongruous, because one (e.g., penetration) showed a significant difference but the other (e.g., average units per home) did not. The analysis estimated separate adjustment factors for single-family and multifamily homes.

The *Adjustment Factor* tab in the database reports adjustment factors by measure and indicates if adjustment factors were applied for the measure-level analysis. Table 4 lists the end uses with adjustment factors applied; generally, respondents overreported end uses – the table highlights if they underreported them. The table footnotes in this report also indicate if the analysis applied adjustment factors. For additional details on adjustment factor calculations and the penetration adjustment factors applied to the analysis, please see Appendix B.2.

| End Use                               | Single-family, 1-4<br>units<br>(n=1,724) | Multifamily, 5+<br>units<br>(n=653) | Overall<br>(n=2,377) |
|---------------------------------------|------------------------------------------|-------------------------------------|----------------------|
| Appliances                            |                                          |                                     |                      |
| Clothes washer                        |                                          | $\checkmark$                        | $\checkmark$         |
| Clothes dryer                         |                                          | $\checkmark$                        | $\checkmark$         |
| Clothes dryer - electric              |                                          | $\checkmark$                        | $\checkmark$         |
| Clothes dryer - gas                   |                                          | $\checkmark$                        | $\checkmark$         |
| Dishwasher                            | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |
| Stand-alone freezer (Chest & Upright) |                                          | $\checkmark$                        | $\checkmark$         |
| Upright freezer                       |                                          | $\checkmark$                        | $\checkmark$         |
| Chest freezer                         |                                          | $\checkmark$                        | $\checkmark$         |
| Dehumidifier                          | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |
| Air Purifier                          |                                          | $\checkmark$                        |                      |
| Stovetop                              |                                          | ✓ (under)                           | ✓ (under)            |

# Table 4: End Uses with Adjustment Factors Applied

(Source: NMR comparison between web-survey and on-site visits)



### R1706 RASS AND R1616/R1708 LIGHTING REPORT

| End Use                               | Single-family, 1-4<br>units<br>(n=1,724) | Multifamily, 5+<br>units<br>(n=653) | Overall<br>(n=2,377) |
|---------------------------------------|------------------------------------------|-------------------------------------|----------------------|
| Primary Heating Fuel                  |                                          |                                     |                      |
| Natural gas                           |                                          | ✓ (under)                           | ✓ (under)            |
| Electric                              |                                          | $\checkmark$                        | $\checkmark$         |
| Heating System                        |                                          |                                     |                      |
| Natural gas furnace                   | $\checkmark$                             |                                     | $\checkmark$         |
| Propane furnace                       |                                          |                                     | $\checkmark$         |
| Oil furnace                           | $\checkmark$                             |                                     | $\checkmark$         |
| Oil boiler                            | ✓ (under)                                |                                     |                      |
| Electric furnace                      |                                          | $\checkmark$                        | $\checkmark$         |
| Electric boiler                       |                                          | $\checkmark$                        | $\checkmark$         |
| Central (ducted) air source heat pump | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |
| Electric baseboard                    | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |
| Electric space heater                 | ✓ (under)                                | $\checkmark$                        | ✓ (under)            |
| Electric wall heater                  |                                          | $\checkmark$                        | $\checkmark$         |
| Cooling System                        |                                          |                                     |                      |
| None                                  | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |
| Central Air                           |                                          | $\checkmark$                        |                      |
| MSHP/ASHP                             |                                          | $\checkmark$                        | ✓                    |
| Thermostat                            |                                          |                                     |                      |
| Standard                              | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |
| Basic Programmable                    | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |
| Wi-Fi smart                           | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |
| Wi-Fi not smart                       | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |
| All                                   |                                          | ✓ (under)                           |                      |
| Water Heater Fuel                     |                                          |                                     |                      |
| Electric                              | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |
| Natural gas                           |                                          | ✓ (under)                           |                      |
| Fuel oil                              | ✓ (under)                                | $\checkmark$                        | ✓ (under)            |



| End Use              | Single-family, 1-4<br>units<br>(n=1,724) | Multifamily, 5+<br>units<br>(n=653) | Overall<br>(n=2,377) |
|----------------------|------------------------------------------|-------------------------------------|----------------------|
| Water Heater System  |                                          |                                     |                      |
| Natural gas standard |                                          | $\checkmark$                        | $\checkmark$         |
| Natural gas tankless |                                          | ✓ (under)                           | ✓ (under)            |
| Electric heat pump   |                                          | $\checkmark$                        | $\checkmark$         |
| Electric tankless    |                                          |                                     | $\checkmark$         |
| Fuel oil standard    |                                          |                                     | $\checkmark$         |
| Electronics          |                                          |                                     |                      |
| APS                  | $\checkmark$                             | $\checkmark$                        | $\checkmark$         |

✓ = End uses adjusted

# 2.4 DATABASE DEVELOPMENT

The RASS Database includes all primary research data points and detailed analysis such as penetration (with precision) by dwelling type, income, tenure, primary heating fuel, participation, and electric company.

The Database combines web-survey and on-site verification data as well as anonymized respondent billing data and was designed to provide additional details and breakdowns not presented in this report. The Database should allow the Companies, or other interested stakeholders, to conduct additional analyses to meet their varied needs, offering users the ability to drill down as desired. Appendix C describes the data processing and Appendix G (provided separately) includes a database-user guide.



# Section 3 End-Use Results

In the Northeast, space heating, water heating, and air conditioning consume the largest share of annual household energy[GR31]. Other end uses (e.g., consumer electronics, refrigeration, lighting, etc.) combined account for two-thirds (66%) of electricity consumption. Figure 1 illustrates this by fuel type.



Figure 1: Annual Household Energy Consumption in the Northeast by End Use (Source: U.S. Energy Information Administration)<sup>1</sup>

<sup>1</sup> Table CE4.2 released May 18, 2019. For more details, see <u>https://www.eia.gov/consumption/residential/data/2015/c&e/pdf/ce4.2.pdf</u>.

This section presents key web-survey and on-site results for heating and cooling, thermostats, water heating, appliances, consumer electronics, lighting, and miscellaneous end-uses. The Database provides comprehensive data points, standard errors, and analyses. The reader should note a few details when reviewing these results:

- Adjustment factors. Data are unadjusted unless noted otherwise. Blue text indicates that an adjustment factor was applied.
- Weighting. Data are unweighted only where specified or if sample sizes are less than 20.
- **Sample sizes.** These vary because invalid responses such as, *don't know*, were removed from the denominator (*i.e.*, base).
- **Dwelling type.** The analyses categorize respondents as multifamily if they live in buildings with five or more units.



- **Dashes.** Dashes in penetration tables indicate that penetration or average units per home are equal to zero.
- **Penetration and Saturation.** The report analyzes the penetration of end uses and the saturation of energy-efficient appliances, products, and lighting.
  - **Penetration** is the percentage of homes with one or more of a particular end use.
  - **Saturation** is the percentage of end uses that share a specific characteristic (for example, ENERGY STAR labeled).

### 3.1 HEATING AND COOLING



- Primary Heating Fuels: Natural gas (43%) and fuel oil (40%) were most common.
- Heating Systems: Oil boilers (22%), gas furnaces (21%), and gas boilers (20%) had[gR32] the highest penetration.
- Heating System Ages: On average, in single-family homes, boilers were 17 years old and furnaces were 12 years old. These are newer than they were in 2011 (at that time).
- Cooling Systems: Room air conditioners (49%) were more common than central air conditioners (40%). Most homes (98%) had at least one cooling system.
- Cooling System Ages: In single-family homes, room air conditioners were 12 years old and central air conditioners were 14 years old, on average. These were older than they were in 2011 (at that time).
- Heat Pumps: Heat pump usage was rare for heating and cooling, with penetration levels ranging from 2% to 4%.
- Efficiency: All efficiency levels of common heating and cooling systems in singlefamily homes have improved since 2011.

### 3.1.1 Penetration

Penetration estimates of primary heating fuels and heating and cooling systems are based on a combination of web-survey results and on-site visits.

Just over two-fifths (43%) of customers' primary heating fuel was natural gas, followed closely by fuel oil (40%) (Table 5). While single-family customers were most likely to use fuel oil as their primary heating fuel (45%), multifamily customers were most likely to use natural gas (54%). Nearly one-third (32%) of multifamily homes used electricity as the primary heating fuel, while only one-tenth (11%) of single-family homes used electric heat for their primary heating fuel.



| Heating Fuel | Single-family, 1-4 units<br>(n=1,640) | Multifamily, 5+ units <sup>1</sup><br>(n=534) | Overall <sup>1</sup><br>(n= 2,174) |  |  |  |
|--------------|---------------------------------------|-----------------------------------------------|------------------------------------|--|--|--|
| Natural gas  | 35%                                   | 54%                                           | 43%                                |  |  |  |
| Fuel oil     | 45%                                   | 6%                                            | 40%                                |  |  |  |
| Electric     | 11%                                   | 32%                                           | 11%                                |  |  |  |
| Propane      | 5%                                    | 4%                                            | 5%                                 |  |  |  |
| Other        | 4%                                    | <1%                                           | 3%                                 |  |  |  |

### Table 5: Primary Heating Fuel

(Source: web-survey and on-site visits)

<sup>1</sup> Percentages do not sum to 100% due to the application of adjustment factors. Blue text indicates that an adjustment factor was applied.

Based on the on-site verification visits, it was clear that some web-survey respondents struggled to accurately identify their heating fuel and system types. For example, a respondent may have correctly identified that his/her heating system used natural gas but may not have known that it was a boiler (or vice versa). The differences in knowledge meant adjustment factors should be estimated separately for fuel types and system types. As such, proportions across end-use attributes do not always align given that adjustment factors are applied to proportions not individuals. This type of scenario also occurred with water heating.

Overall, customers reported heating their homes most often with fuel oil boilers (22%) and natural gas furnaces (21%) and boilers (20%). Table 6 presents the penetration of heating system types. Single-family customers were most likely to report heating their homes with oil (38%) and natural gas (21%) boilers – nearly one-third (30%) also used electric space heaters. Multifamily customers most often reported using natural gas furnaces (28%) and electric baseboards (28%) for heating. Customers' rarely had central heat pumps (4%) and ductless mini-split heat pumps (DMSHP) (3%) for heating. Approximately 10% of survey respondents reported having radiant floor heating in their bathrooms (not reported in table).



| Heating System           | Single-family, 1-4 units<br>(n=1,665) |           | Multifamily, 5+<br>units <mark>[GR34]</mark><br>(n=549) |           | Overall<br>(n= 2,214)  |           |
|--------------------------|---------------------------------------|-----------|---------------------------------------------------------|-----------|------------------------|-----------|
|                          | Customers                             | Fuel Type | Customers                                               | Fuel Type | Customers              | Fuel Type |
| Natural Gas <sup>2</sup> |                                       |           |                                                         |           |                        |           |
| Furnace                  | 18%                                   | 39%       | 28%                                                     | 58%       | 21%                    | 45%       |
| Boiler                   | 21%                                   | 46%       | 17%                                                     | 35%       | 20%                    | 43%       |
| Fireplace                | 7%                                    | 15%       | 3%                                                      | 6%        | 6%                     | 13%       |
| Fuel Oil                 |                                       |           |                                                         |           |                        |           |
| Boiler                   | 38%                                   | 76%       | 4%                                                      | 57%       | 22%                    | 71%       |
| Furnace                  | 12%                                   | 24%       | 3%                                                      | 43%       | <mark>9%</mark> [GR35] | 29%       |
| Electric <sup>2</sup>    |                                       |           |                                                         |           |                        |           |
| Space heater             | 30%                                   | 71%       | 2%                                                      | 5%        | 16%                    | 46%       |
| Electric baseboard       | 8%                                    | 19%       | 28%                                                     | 70%       | 12%                    | 34%       |
| Central heat pump        | 1%                                    | 2%        | 8%                                                      | 20%       | 4%                     | 11%       |
| Ductless MSHP            | 3%                                    | 7%        | 2%                                                      | 5%        | 3%                     | 9%        |
| Propane                  |                                       |           |                                                         |           |                        |           |
| Boiler                   | 3%                                    | 43%       | 2%                                                      | 40%       | 3%                     | 75%       |
| Furnace                  | 4%                                    | 57%       | 3%                                                      | 60%       | 1%                     | 25%       |
| Other                    |                                       |           |                                                         |           |                        |           |
| Fireplace (Wood)         | 16%                                   | 100%      | 1%                                                      | 100%      | 14%                    | 100%      |

# Table 6: Heating System Penetration[GR33]

(Source: web-survey and on-site visits)<sup>1</sup>

<sup>1</sup> Surveys did not ask for heating system quantities. Percentages do not sum to 100% because of adjustment factors and customers had more than one type of heating system. Blue text indicates that an adjustment factor was applied.

<sup>2</sup> Natural gas system types (47%) and electric system types (35%) sum to greater than the primary heating fuels (43% and 11%, respectively) shown in Table 5 due to adjustment factors and the fact that some homes do not use these as their primary systems.



Customers most often cooled their homes using room air conditioners (49%; Table 7). Two-fifths of homes (40%) had central air conditioning.<sup>13</sup> DMSHPs were rare, as only 2% of customers used them for cooling.<sup>14</sup> Only a small number of respondents (2%) reported having no cooling system.<sup>15</sup> Among respondents with a cooling system, 53% had at least one other type of cooling mechanism, such as a secondary air conditioning system or a portable or ceiling fan.

### Table 7: Cooling System Penetration

(Source: web-survey and on-site visits)<sup>1</sup>

| Cooling System                   | Single-family, 1-4 units<br>(n=1,724) | Multifamily, 5+ units<br>(n=653) | Overall<br>(n=2,377) |
|----------------------------------|---------------------------------------|----------------------------------|----------------------|
| Room air conditioner             | 50%                                   | 46%                              | 49%                  |
| Central air<br>conditioner[GR36] | 39%                                   | 38%                              | 40%                  |
| Mini-split heat pump             | 4%                                    | <1%                              | 2%                   |
| No cooling system <sup>2</sup>   | 3%                                    | 1%                               | 2%                   |

<sup>1</sup> Surveys did not ask about quantities for these systems. Some homes had more than one cooling system. Percentages sum to less than 100% because of adjustment factors. Blue text indicates that an adjustment factor was applied.

<sup>2</sup> This also includes respondents who reported having only ceiling or portable fans.

# 3.1.2 Efficiency and Age

Efficiency and age assessments come solely from on-site visit results. This report assesses those data from single-family on-site visits (the R1705/R1609 report assesses similar parameters for the multifamily on-site visits).

Table 8 summarizes the efficiency level of heating and cooling systems. For each of the following, higher values represent higher efficiency levels:

- Annual fuel utilization efficiency (**AFUE**)<sup>16</sup> measures the efficiency of furnaces and boilers on a zero to 100 scale.
- Seasonal energy-efficiency ratio (**SEER**) measures the efficiency of central air conditioners, ductless MSHPs, and ducted ASHPs over an assumed cooling season.

<sup>&</sup>lt;sup>16</sup> On-site technicians recorded the efficiency ratings shown on units' energy labels. Technicians did not test actual performance.



<sup>&</sup>lt;sup>13</sup> The team calculated adjustment factors that included air source heat pumps found on-site. Air source heat pumps are likely indistinguishable from central air systems to the average homeowner.

<sup>&</sup>lt;sup>14</sup> Other types of heat pumps were observed on-site, particularly in multi-family homes, but DMSHPs were the only type of heat pump included in the survey.

<sup>&</sup>lt;sup>15</sup> Survey respondents could specify portable fans and ceiling fans as cooling systems. On site, the team collected data on room and central air conditioners and heat pumps only. In order to make accurate comparisons with on-site data, we consider respondents that cool their homes exclusively with a portable or ceiling fan as having no cooling system. Overall, 6% of respondents reported they exclusively cool their home with a portable or ceiling fan. (This is higher than the percent of homes reported to have no cooling system because that value was adjusted, while we did not verify the presence of fans on-site.)

- The energy-efficiency ratio (**EER**) measures the efficiency of room air conditioners based on cooling capacity per wattage.
- Heating seasonal performance factor (**HSPF**) measures heat pump efficiency, representing the heat delivered to a space given an amount of electricity consumed.

Federal standards are included in the far-right column for comparison, though with comparisons one should note the small sample sizes for many equipment types. Among common systems, the most noticeable difference between observed efficiency and federal standards was for natural gas furnaces (AFUE of 88.4 versus 80.0).

|                       |                   |                  |                             | , <u>,</u>                  |            |             |                   |                                |
|-----------------------|-------------------|------------------|-----------------------------|-----------------------------|------------|-------------|-------------------|--------------------------------|
| End-Use               |                   | Quantit<br>y (n) | Average                     | Minimum                     | Media<br>n | Maximu<br>m | Standar<br>d Dev. | Federal<br>Standards<br>[GR37] |
| Furnace               | Natural<br>gas    | 26               | 88.4                        | 68.0<br>[GR38]              | 92.3       | 96.7        | 8.59              | 80                             |
| (AFUE)                | Oil               | 9                | 82.7                        | 80.0                        | 82.8       | 86.0        | 2.17              | 80                             |
| Hot water             | Natural<br>gas    | 25               | <mark>83.0</mark><br>[GR39] | <mark>65.0</mark><br>[GR40] | 82.0       | 95.5        | 8.18              | 82                             |
| boiler                | Oil               | 19               | 83.1                        | 80.0                        | 83.2       | 87.0        | 2.58              | 84                             |
| (AFUE)                | Propan<br>e       | 2                | 94.0                        | 91.2                        | 94.0       | 96.8        | -                 | 82                             |
| Steam<br>boiler       | Natural<br>gas    | 4                | 76.9                        | 65.0                        | 80.0       | 82.4        | 7.98              | 80                             |
| (AFUE)                | Oil               | 1                | 83.8                        | -                           | -          | -           | -                 | 82                             |
|                       | Natural<br>gas    | 29               | 82.5                        | 65.0                        | 81.8       | 95.5        | 8.29              |                                |
| All boilers           | Oil               | 20               | 83.1                        | 80.0                        | 83.5       | 87.0        | 2.51              | See above                      |
|                       | Propan<br>e       | 2                | 94.0                        | 91.2                        | 94.0       | 96.8        | -                 |                                |
| Air                   | Central<br>(SEER) | 39               | 13.1                        | 10.0                        | 13.0       | 16.0        | 1.80              | 13                             |
| s                     | Room<br>(EER)     | 109              | 10.2                        | 6.7                         | 10.0       | 12.2        | 0.93              | 9 to 11 <sup>2</sup>           |
| Ductless              | HSPF <sup>3</sup> | 3                | 9.9                         | 8.6                         | 10.6       | 10.6        | 1.15              | 8.2                            |
| Mini-Split            | SEER              | 5                | 16.3                        | 13.5                        | 15.3       | 20.0        | 3.07              | 14                             |
| Ducted Air-<br>Source | HSPF              | 2                | 8.6                         | 8.2                         | 8.6        | 9.0         | -                 | 8.2                            |
| Heat Pump             | SEER              | 2                | 16.0                        | 15.0                        | 16.0       | 17.0        | -                 | 14                             |

Table 8: Heating and Cooling System – Efficiency Levels

(Source: single-family on-site visits; n = 90)

<sup>1</sup> Source: Electronic Code of Federal Regulations. <u>https://www.ecfr.gov/cgi-bin/text-</u>

idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430 132&rgn=div8. March 14, 2019.



<sup>2</sup> Values range by size and other features. Federal standards began using combined EER (CEER) in 2014, but the team did not collect CEER data. However, using the U.S. Department of Energy's Compliance Certification Database we ran a regression modeling suggesting that CEER is equal to 99% of EER.
<sup>3</sup> Two ductless MSHPs were used for cooling only.



All efficiency levels of common heating and cooling systems have improved since 2011 (Table 9).[GR41]

| Endling                        | 201          | 1       | 2018         |         |  |  |
|--------------------------------|--------------|---------|--------------|---------|--|--|
| Ella-Ose                       | Quantity (n) | Average | Quantity (n) | Average |  |  |
| Natural gas furnace (AFUE)     | 28           | 85.1    | 26           | 88.4    |  |  |
| Natural gas boiler (AFUE)      | 25           | 79.7    | 29           | 82.5    |  |  |
| Oil boiler (AFUE)              | 84           | 82.1    | 20           | 83.1    |  |  |
| Central air conditioner (SEER) | 94           | 11.3    | 39           | 13.1    |  |  |
| Room air conditioner (EER)     | 172          | 9.7     | 109          | 10.2    |  |  |

 Table 9: Common Heating and Cooling System – Efficiency Levels by Year

 (Sources: single-family on-site visits)

Table 10 displays ages for common heating and cooling equipment in single-family homes. Boilers averaged 17 years old; one-half (50%) were 14 years old or older. Furnaces averaged 12 years and the majority were between four and 13 years old (67%). Compared to the 2011 study results, heating systems were newer in 2018 – furnaces had been 16 years old and boilers had been 18 years old, on average, at that time (not shown).

Nearly four-fifths of room air conditioners (79%) and central air conditioners (77%) were manufactured after 2000; on average, they were 12 and 13 years old, respectively. Room air conditioner EUL in the PSD is newer [GR42] (nine years) than the sample while central air conditioner EUL in the PSD is older (18 years) than the sample[GR43]. Systems in 2018 were newer compared to the 2011 results when room air conditioners were nine years old and central air conditioners were 11 years old, on average, at that time.



| Year                      | Heat           | ing                        | Cooli       | ng²        | Heat Pumps <sup>2</sup> |
|---------------------------|----------------|----------------------------|-------------|------------|-------------------------|
| Manufactured <sup>1</sup> | Furnace (n=32) | Boiler (n=41) <sup>2</sup> | Room (n=86) | CAC (n=41) | (n=6)                   |
| 2016 or newer             | 2%             | 9%                         | 13%         | 7%         | 17%                     |
| 2011 to 2015              | 28%            | 17%                        | 33%         | 24%        | 17%                     |
| 2006 to 2010              | 39%            | 24%                        | 11%         | 21%        | 67%                     |
| 2001 to 2005              | 15%            | 12%                        | 22%         | 25%        | -                       |
| 1991 to 2000              | 11%            | 26%                        | 20%         | 23%        | -                       |
| 1981 to 1990              | 5%             | 8%                         | 2%          | -          | -                       |
| 1980 or earlier           | -              | 4%                         | -           | -          | -                       |
| Age in Years              |                |                            |             |            |                         |
| Average                   | 12             | 17                         | 12          | 14         | 9                       |
| Median                    | 11             | 14                         | 13          | 11         | 10                      |
| CT EUL <sup>3</sup>       | n/a            | 20 (gas only)              | 9[GR44]     | 18         | 18                      |

### Table 10: Common Heating and Cooling System – Ages

(Source: single-family on-site visits; n = 90)

<sup>1</sup> Age was indecipherable for some units.

<sup>2</sup> Percentages do not sum to 100% due to rounding.

<sup>3</sup> Source: 2018 CT Program Savings Document:

https://www.energizect.com/sites/default/files/2018-PSD-FINAL-121217.pdf.

# 3.2 THERMOSTATS



- Type: Standard thermostats (62%) were more common than programmable thermostats (45%) and Wi-Fi thermostats (1% to 5%) had not penetrated the market at all. Customers were generally unfamiliar with the type of thermostats they had.
- Programming: Nearly one-third of customers with programmable thermostats (30%) did not actually program them.
- Usage: The typical customer reported that their thermostat setpoints changed by two or three degrees over the course of the day.

As shown in Table 11, according to web-survey and on-site visit results, customers most often had standard thermostats (62%), followed by basic programmable thermostats (45%). Customers rarely had smart (5%) or not smart (1%) Wi-Fi thermostats; however, readers will note the particularly small sample sizes for Wi-Fi thermostat: the majority of respondents did not know if they had these – an indication of lack of awareness of this technology. On that note, thermostat types all required adjustment factors, implying a general lack of understanding of thermostat functions and features. Of the homes with basic programmable thermostats, 70% of web-survey



respondents reported using the programmable features.<sup>17</sup> Of the 132 respondents who reported having a smart Wi-Fi thermostat, Nest was the most popular brand (36%), followed by Honeywell (31%) and Ecobee (14%).

| Thermostat         | Sin   | gle-Fam<br>1-4 units | ily,<br>s | Multif | family, 5+ | · units |       | Overall    |       |
|--------------------|-------|----------------------|-----------|--------|------------|---------|-------|------------|-------|
|                    | n     | Pen.                 | Units     | n      | Pen.       | Units   | n     | Pen.       | Units |
| Standard           | 1,151 | 56%                  | 1.05      | 461    | 68%        | 1.04    | 1,612 | <b>62%</b> | 1.10  |
| Basic programmable | 1,000 | 50%                  | 0.94      | 353    | 32%        | 0.36    | 1,353 | 45%        | 0.81  |
| Wi-Fi smart        | 455   | 6%                   | 0.08      | 223    | 2%         | 0.02    | 678   | 5%         | 0.07  |
| Wi-Fi not smart    | 419   | 2%                   | 0.05      | 204    | 1%         | 0.01    | 623   | 1%         | 0.03  |
| Overall            | 1.721 | 99%                  | 2.28      | 647    | 99%        | 1.39    | 2.368 | 98%        | 2.20  |

# Table 11: Thermostat – Penetration and Average Units per Household (Source: web-survey and on-site visits)<sup>1</sup>

Note: n = number of respondents; Pen. = penetration; Units = Average units per household

<sup>1</sup> Percentages do not sum to 100% because customers can have more than one thermostat. Blue text indicates that an adjustment factor was applied.

As shown in Table 12, web-survey respondents reported that, during the heating season,<sup>18</sup> depending on the time of day, they set their thermostats to between 66°F and 68°F, on average. Standard deviations were roughly 4°F to 5°F, yet averages and medians were nearly identical. Comparing their maximum settings with their minimum settings, the typical respondent varied their temperature set points by 3°F on a given winter day.

Those who had cooling systems, reported that they set their thermostats on average to between 70°F and 71°F during the cooling season. Standard deviations were about 4°F, yet averages and medians were nearly identical. Their cooling thermostat set points generally did not vary by time of day. However, the variation for each respondent's average high and low temperature, indicates they changed their set points by 2°F on a typical summer day.

# Table 12: Temperature Setting Habits (°F)

(Source: web-survey only)

|                          | Single | -family, 1-4 | units        | Multi | family, 5+ u | inits        |      |           |              |
|--------------------------|--------|--------------|--------------|-------|--------------|--------------|------|-----------|--------------|
| Time of Day <sup>1</sup> | Avg.   | Median       | Std.<br>Dev. | Avg.  | Median       | Std.<br>Dev. | Avg. | Median    | Std.<br>Dev. |
| Heating Season           |        | (n=1,659)    |              |       | (n=586)      |              |      | (n=2,245) |              |

<sup>&</sup>lt;sup>18</sup> Heating season refers to December through February and cooling season refers to June through August.



<sup>&</sup>lt;sup>17</sup> This is somewhat higher than in Rhode Island where 60% of customers with programmable thermostats used programmable features. Source: NMR. "National Grid Rhode Island Residential Appliance Saturation Survey (Study RI2311 Report." October 11, 2018.

http://www.ripuc.org/eventsactions/docket/6.%20National%20Grid%20RI2311%20RASS%20Final%20Report%2011 OCT2018.pdf.

| Morning (6 to 9am)                                                                   | 67                   | 68                                      | 3.88                         | 69                   | 70                                    | 4.02                         | 67                   | 68                                      | 3.98                         |
|--------------------------------------------------------------------------------------|----------------------|-----------------------------------------|------------------------------|----------------------|---------------------------------------|------------------------------|----------------------|-----------------------------------------|------------------------------|
| Day (9am to 5pm)                                                                     | 66                   | 67                                      | 4.23                         | 68                   | 70                                    | 4.54                         | 67                   | 68                                      | 4.34                         |
| Evening (5 to 9pm)                                                                   | 68                   | 68                                      | 3.40                         | 69                   | 70                                    | 3.69                         | 68                   | 68                                      | 3.50                         |
| Night (9pm to 6am)                                                                   | 65                   | 65                                      | 4.46                         | 68                   | 68                                    | 4.48                         | 66                   | 66                                      | 4.58                         |
| Setpoint Change                                                                      | 3                    | 2                                       | 3.30                         | 2                    | 0                                     | 3.08                         | 3                    | 2                                       | 3.28                         |
|                                                                                      |                      |                                         |                              |                      |                                       |                              |                      |                                         |                              |
| Cooling Season                                                                       |                      | (n=1,315)                               |                              |                      | (n=515)                               |                              |                      | (n=1,830)                               | )                            |
| Cooling Season<br>Morning (6 to 9am)                                                 | 71                   | (n=1,315)<br>70                         | 4.10                         | 70                   | (n=515)<br>70                         | 4.11                         | 71                   | (n=1,830)<br>70                         | 4.13                         |
| Cooling Season<br>Morning (6 to 9am)<br>Day (9am to 5pm)                             | 71<br>71             | (n=1,315)<br>70<br>70                   | 4.10<br>4.45                 | 70<br>70             | (n=515)<br>70<br>70                   | 4.11<br>4.62                 | 71<br>71             | (n=1,830)<br>70<br>70                   | 4.13<br>4.49                 |
| Cooling SeasonMorning (6 to 9am)Day (9am to 5pm)Evening (5 to 9pm)                   | 71<br>71<br>70       | (n=1,315)<br>70<br>70<br>70             | 4.10<br>4.45<br>4.05         | 70<br>70<br>69       | (n=515)<br>70<br>70<br>70             | 4.11<br>4.62<br>4.14         | 71<br>71<br>70       | (n=1,830)<br>70<br>70<br>70             | 4.13<br>4.49<br>4.09         |
| Cooling SeasonMorning (6 to 9am)Day (9am to 5pm)Evening (5 to 9pm)Night (9pm to 6am) | 71<br>71<br>70<br>70 | (n=1,315)<br>70<br>70<br>70<br>70<br>70 | 4.10<br>4.45<br>4.05<br>4.46 | 70<br>70<br>69<br>69 | (n=515)<br>70<br>70<br>70<br>70<br>70 | 4.11<br>4.62<br>4.14<br>4.07 | 71<br>71<br>70<br>70 | (n=1,830)<br>70<br>70<br>70<br>70<br>70 | 4.13<br>4.49<br>4.09<br>4.40 |

<sup>1</sup> Values exclude outliers three standard deviations from the mean. Cooling sample sizes exclude respondents who did not have cooling systems. The table shows the sample sizes from the time of day with the most responses; sample sizes vary throughout the table because the survey question did not force a response.

# 3.3 WATER HEATING

- > Fuel Types: Customers were most likely to have natural gas water heaters (42%).
- Systems Types: Storage tank waters had the highest penetration. HPWHs had not penetrated the market (1%), but on-site results show technical feasibility was high – nearly one-half of single-family homes (47%) could have technically accommodated them.
- Ages: As they were in 2011, water heaters in single-family homes were 11 years old, on average – a sign of nearing the end of useful life.

### 3.3.1 Penetration

Penetration estimates of water heating fuels and water heater systems are based on a combination of web-survey results and on-site visits.

Customers were more likely to have natural gas water heaters (42%) than fuel oil (34%) and electric (29%) units (Table 13). Single-family customers (58%) were considerably more likely than multifamily customers (2%) to have fuel-oil fired water heaters. Fifteen percent of survey respondents reported having a second water heater.



|             | (Source, web-survey and on-site visits) |                                  |                                   |  |  |  |  |  |  |
|-------------|-----------------------------------------|----------------------------------|-----------------------------------|--|--|--|--|--|--|
| Fuel Type   | Single-family, 1-4 units<br>(n=1,521)   | Multifamily, 5+ units<br>(n=406) | Overall <sup>1</sup><br>(n=1,927) |  |  |  |  |  |  |
| Natural gas | 41%                                     | 54%                              | 42%                               |  |  |  |  |  |  |
| Fuel oil    | 58%                                     | 2%                               | 34%                               |  |  |  |  |  |  |
| Electricity | 24%                                     | 40%                              | 29%                               |  |  |  |  |  |  |
| Propane     | 8%                                      | 4%                               | 7%                                |  |  |  |  |  |  |

# Table 13: Water Heating Fuel

(Source: web-survey and on-site visits)<sup>1</sup>

<sup>1</sup> Percentages do not sum to 100% due to the application of adjustment factors and households that reported multiple water heaters. **Blue text** indicates that an adjustment factor was applied. Sample sizes reflect households, not water heater units.

While natural gas and fuel oil water heaters were common, adjustment factors resulted in electric standard (i.e., storage) tank units (30%) having the highest penetration of any water heater type. Though, they are closely followed by natural gas storage tank units (23%). Similar to heating systems, it was clear that some web-survey respondents struggled to accurately identify their water heaters' fuel *and* system types. As such, some results in Table 14 are difficult to reconcile with results in Table 13. Less than 1% of homes had HPWHs.



| Water Heater          | Single-family, 1-4<br>units<br>(n=1,521) | Multifamily, 5+ units<br>(n=406) | Overall<br>(n=1,927) |
|-----------------------|------------------------------------------|----------------------------------|----------------------|
| Natural Gas           |                                          |                                  |                      |
| Storage tank          | 32%                                      | 21%                              | 23%                  |
| Indirect              | 6%                                       | 7%                               | 6%                   |
| Tankless <sup>2</sup> | 3%                                       | 17%                              | 7%                   |
| Electric              |                                          |                                  |                      |
| Storage tank          | 28%                                      | 46%                              | 30%                  |
| Fuel oil              |                                          |                                  |                      |
| Indirect[GR45]        | 7%                                       | 1%                               | 6%                   |
| Storage tank[GR46]    | 10%                                      | 3%                               | 5%                   |
| Tankless <sup>2</sup> | 4%                                       | 1%                               | 3%                   |
| Combination           | 3%                                       | -                                | 3%                   |
| Propane               |                                          |                                  |                      |
| Storage tank          | 5%                                       | 1%                               | 4%                   |

# **Table 14: Water Heating System Penetration**

(Source: web-survey and on-site visits)1

<sup>1</sup> Percentages do not sum to 100% due to the application of adjustment factors and households that reported multiple water heaters. **Blue text** indicates that an adjustment factor was applied. Table excludes systems where overall penetration was less than 3% (e.g., electric tankless, heat pump, and pellet water heaters, etc.).

<sup>2</sup> Includes tankless coils and instantaneous, on-demand systems. Though, fuel oil systems are likely only tankless coils.

# 3.3.2 Efficiency and Age

Efficiency and age assessments come solely from on-site visit results. This report assesses those data from single-family on-site visits (the R1705/R1609 report assesses similar parameters for the multifamily on-site visits).

Table 15 shows the Energy Factors (EFs) of water heaters observed on site in single-family homes. EF is a measure of hot water produced per unit of fuel over a typical day (higher values equal greater efficiency). Readers should note small sample sizes for many system types. Looking at average EF by fuel type, the average EF among fossil-fuel based units ranged from 0.65 to 0.76. The average EF among electric units was 1.04 – the one HPWH had an EF of 3.25.

Not shown, EF values were not noticeably different than those reported in *R5*. For example, in 2011, electric storage water heater EF was 0.89, on average (versus 0.91 in 2018).[GR47]


| (Source: single-family on-site visits; n = 90) |             |                 |         |         |        |         |                  |  |
|------------------------------------------------|-------------|-----------------|---------|---------|--------|---------|------------------|--|
| End-Use                                        |             | Quantity<br>(n) | Average | Minimum | Median | Maximum | Standard<br>Dev. |  |
|                                                | Natural gas | 34              | 0.61    | 0.50    | 0.60   | 0.79    | 0.06             |  |
| Standalone                                     | Electric    | 16              | 0.91    | 0.86    | 0.92   | 0.93    | 0.02             |  |
| storage                                        | Oil         | 3               | 0.58    | 0.56    | 0.56   | 0.63    | 0.04             |  |
|                                                | Propane     | 1               | 0.69    | -       | -      | -       | -                |  |
|                                                | Oil         | 11              | 0.76    | 0.74    | 0.77   | 0.80    | 0.03             |  |
| Indirect with storage                          | Natural gas | 7               | 0.79    | 0.74    | 0.80   | 0.84    | 0.04             |  |
|                                                | Propane     | 1               | 0.84    | -       | -      | -       | -                |  |
|                                                | Oil         | 7               | 0.53    | 0.45    | 0.50   | 0.60    | 0.06             |  |
| l ankless coil                                 | Natural gas | 1               | 0.50    | -       | -      | -       | -                |  |
| Combination appliance                          | Natural gas | 2               | 0.94    | 0.94    | 0.94   | 0.95    | -                |  |
| Instantaneous                                  | Natural gas | 2               | 0.96    | 0.96    | 0.96   | 0.97    | -                |  |
| Heat pump<br>water heater                      | Electric    | 1               | 3.25    | -       | -      | -       | -                |  |
| Overall by Fue                                 | I Туре      |                 |         |         |        |         |                  |  |
| Natural gas                                    |             | 46              | 0.67    | 0.50    | 0.62   | 0.97    | 0.12             |  |
| Oil                                            |             | 21              | 0.66    | 0.45    | 0.74   | 0.80    | 0.12             |  |
| Electric                                       |             | 17              | 1.04    | 0.86    | 0.92   | 3.25    | 0.57             |  |
| Propane                                        |             | 2               | 0.76    | 0.69    | 0.76   | 0.84    | -                |  |

## Table 15: Water Heaters – Energy Factors GR48]

As shown in Table 16, considering the standard lifetime of water heaters,<sup>19</sup> the average water heater in single-family homes was nearing the end of its useful life. Most often they were manufactured between 2006 and 2015 (64%). As in 2011 (not shown), they were 11 years old, on average.

<sup>&</sup>lt;sup>19</sup> The 2018 Connecticut Program Savings Document assumes an 11-year estimated useful life (EUL) for a highefficiency gas water heater.



| Table | 16: | Water | Heaters - | - Ages |
|-------|-----|-------|-----------|--------|
|-------|-----|-------|-----------|--------|

| Year<br>Manufactured <sup>1</sup> | Indirect w/<br>Storage Tank<br>(n=15) | Storage,<br>Stand Alone<br>(n=56) | Tankless Coil<br>(n=7) | Other<br>(n=5)² | Overall<br>(n=83) |  |  |  |  |  |
|-----------------------------------|---------------------------------------|-----------------------------------|------------------------|-----------------|-------------------|--|--|--|--|--|
| 2016 or newer                     | 7%                                    | 10%                               | -                      | 20%             | 9%                |  |  |  |  |  |
| 2011 to 2015                      | 40%                                   | 33%                               | 29%                    | 80%             | 34%               |  |  |  |  |  |
| 2006 to 2010                      | 27%                                   | 34%                               | 29%                    | -               | 30%               |  |  |  |  |  |
| 2001 to 2005                      | 7%                                    | 14%                               | 14%                    | -               | 13%               |  |  |  |  |  |
| 1991 to 2000                      | 13%                                   | 9%                                | 29%                    | -               | 13%               |  |  |  |  |  |
| 1981 to 1990                      | 7%                                    | -                                 | -                      | -               | 1%                |  |  |  |  |  |
| Age in Years                      |                                       |                                   |                        |                 |                   |  |  |  |  |  |
| Average                           | 13                                    | 10                                | 14                     | 5               | 11                |  |  |  |  |  |
| Median                            | 11                                    | 10                                | 12                     | 5               | 10                |  |  |  |  |  |

(Source: single-family on-site visits; n = 90)

<sup>1</sup> Age was indecipherable for some units.

<sup>2</sup> The "Other" category includes two combination appliances: one HPWH, one solar hot water heater, and one instantaneous water heater.

### 3.3.3 Heat Pump Water Heater Technical Feasibility

As shown in Table 17, nearly one-half (47%) of single-family on-site homes had water heaters installed in locations that could technically readily accommodate a HPWH because they were sufficiently large, warm, and had a drain to handle condensate.<sup>20</sup> The biggest limiting factor observed on site was insufficient space (26%). Nonetheless, this technical feasibility assessment does not account for the cost-effectiveness of installing HPWHs.

### **Table 17: Heat Pump Water Heater Feasibility**

(Source: single-family on-site visits; n=86)<sup>1</sup>

| Conditions                             | Percentage of Homes |
|----------------------------------------|---------------------|
| All conditions met                     | 47%                 |
| Room likely kept at ≥ 50°F, year-round | 90%                 |
| Ceiling height ≥ 6.5 feet              | 87%                 |
| Drain present                          | 82%                 |
| Volume > 750 cubic feet                | 74%                 |
| HPWH already installed                 | 1%                  |

<sup>1</sup> Not all criteria could be assessed in four of the homes.

<sup>&</sup>lt;sup>20</sup> Examples of programs providing these criteria as general requirements for HPWH installation: <u>https://www.masssave.com/en/shop/equipment/electric-water-heaters/</u>



## **3.4 APPLIANCES**



> **Refrigerators:** One in five homes had more than one refrigerator.

- Common Appliances: Roughly three-quarters of homes had clothes washers (79%) and dryers (77%), and dishwashers (73%).
- ENERGY STAR Saturation: Among appliances in single-family homes, dishwashers had high ENERGY STAR saturation (73%) – an increase from 2011 (63%). While Dehumidifiers had somewhat low penetration (33%), they had relatively high ENERGY STAR saturation (75%).
- Appliance Ages: On average, appliances in single-family homes were between nine and 16 years old.
- Habits: Customers used warm or hot water for more than one-half (52%) of their loads of laundry, on average.

#### 3.4.1 Penetration

Penetration estimates of appliances are based on a combination of web-survey results and onsite visits. Table 18 presents the penetration and average number of units per household for kitchen and other appliances. As expected, refrigerator (100%), oven (99%), and stove (99%) penetration were high. On average, households reported having 1.23 refrigerators, with 20% of the sample having more than one refrigerator. [GR49]

In-unit clothes washers (79%) and dryers (77%) were somewhat less common, particularly among multifamily homes (50% and 48%, respectively). Without differentiation by dwelling type, nearly three-quarters (73%) of homes reported having a dishwasher.

Overall, one-third (33%) of homes reported having a dehumidifier, but penetration was much higher among single-family homes (46%) than multifamily homes (1%). Nearly one-half of homes (45%) reported having a humidifier.



| End lice                | Sir   | igle-Fam<br>1-4 upits | nily,      | Multif | family, 5+ | units |       | Overall |       |
|-------------------------|-------|-----------------------|------------|--------|------------|-------|-------|---------|-------|
| End-Ose                 | n     | Pen.                  | ,<br>Units | n      | Pen.       | Units | n     | Pen.    | Units |
| Kitchen                 |       |                       |            |        |            |       |       |         |       |
| Refrigerator            | 1,729 | 99%                   | 1.27       | 671    | 100%       | 1.03  | 2400  | 100%    | 1.23  |
| Microwave <sup>2</sup>  | 1,689 | 96%                   | N/A        | 650    | 96%        | N/A   | 2,339 | 96%     | N/A   |
| Dishwasher              | 1,588 | 73%                   | 0.75       | 605    | 72%        | 0.72  | 2,193 | 73%     | 0.74  |
| Standalone freezer      | 1,349 | 37%                   | 0.40       | 416    | 4%         | 0.04  | 1,765 | 20%     | 0.21  |
| Oven <sup>3</sup>       | 1,749 | 99%                   | N/A        | 677    | 98%        | N/A   | 2,426 | 99%     | N/A   |
| Electric                | 1,749 | 71%                   | N/A        | 677    | 77%        | N/A   | 2,426 | 72%     | N/A   |
| Natural gas             | 1,749 | 30%                   | N/A        | 677    | 22%        | N/A   | 2,426 | 29%     | N/A   |
| Stovetop                | 1,749 | 99%                   | N/A        | 677    | 99%        | N/A   | 2,426 | 99%     | N/A   |
| Electric                | 1,749 | 62%                   | N/A        | 677    | 69%        | N/A   | 2,426 | 63%     | N/A   |
| Natural gas             | 1,749 | 36%                   | N/A        | 677    | 26%        | N/A   | 2,426 | 34%     | N/A   |
| Clothes                 |       |                       |            |        |            |       |       |         |       |
| Clothes washer          | 1,683 | 97%                   | 0.99       | 552    | 50%        | 0.51  | 2,235 | 79%     | 0.81  |
| Clothes dryer           | 1,660 | 96%                   | 0.97       | 544    | 48%        | 0.50  | 2,204 | 77%     | 0.79  |
| Electric                | 1,660 | 84%                   | 0.85       | 544    | <b>46%</b> | 0.47  | 2,204 | 71%     | 0.72  |
| Natural gas             | 1,660 | 11%                   | 0.11       | 544    | 2%         | 0.02  | 2,204 | 7%      | 0.07  |
| Environmental Cont      | rol   |                       |            |        |            |       |       |         |       |
| Humidifier <sup>2</sup> | 970   | 47%                   | 0.62       | 427    | 37%        | 0.42  | 1,397 | 45%     | 0.59  |
| Dehumidifier            | 1,257 | 46%                   | 0.62       | 392    | 1%         | 0.01  | 1,649 | 33%     | 0.44  |
| Air purifier            | 1,749 | 6%                    | N/A        | 677    | 3%         | N/A   | 2,426 | 6%      | N/A   |

## Table 18: Appliances – Penetration and Average Units per Household

(Source: web-survey and on-site visits)1

Note: n = number of respondents; Pen. = penetration; Units = Average units per household

<sup>1</sup> Percentages do not sum to 100% because homes had more than one end use. Blue text indicates that an adjustment factor was applied.

<sup>2</sup> Not verified on site.

<sup>3</sup> Penetration of electric and natural gas ovens may sum to greater than 100% because the respondent reported having two ovens with different fuel types.

## 3.4.2 Efficiency and Age

ENERGY STAR saturation and age estimates come solely from on-site visit results. This report assesses those data from single-family on-site visits (the R1705/R1609 report assesses similar parameters for the multifamily on-site visits). Table 19 shows ENERGY STAR saturation [GR50] among on-site appliances by age. ENERGY STAR saturation among dehumidifiers (75%) and dishwashers (73%) were fairly high. In 2011, a smaller share of dishwashers (63%) were ENERGY STAR. However, ENERGY STAR specifications advance over time, so the label among



older appliances loses significance. It is useful therefore to examine ENERGY STAR status among recently manufactured appliances (2013 or later). Dishwashers (40%) and dehumidifiers (34%) still showed the highest levels of ENERGY STAR saturation. [GR51]

|                     | (                                         | · · · · · ·                 | ,           |                                        |
|---------------------|-------------------------------------------|-----------------------------|-------------|----------------------------------------|
|                     | Year of first                             |                             | ENERGY STAR | Certified                              |
| Appliance           | ENERGY STAR<br>Specification <sup>1</sup> | Overall<br>Quantity<br>(n)² | Any Age     | Manufactured in or<br>after 2013[GR52] |
| Dishwasher          | 1996                                      | 71                          | 73%         | 40%                                    |
| Dehumidifier        | 2001                                      | 63                          | 75%         | <mark>34%</mark> [GR53]                |
| Refrigerator        | 1996                                      | 120                         | 38%         | 20%[GR54]                              |
| Clothes washer      | 1997                                      | 89                          | 55%         | 18%[GR55]                              |
| Standalone freezer  | 1996                                      | 18                          | 22%         | 11%                                    |
| Clothes dryer[GR56] | 2014                                      | 83                          | 4%          | 3%                                     |

#### Table 19: Appliances – ENERGY STAR Saturation

(Source: single-family on-site visits; n = 90)

<sup>1</sup> Source: https://www.energystar.gov/

<sup>2</sup> Bases are associated with availability of ENERGY STAR status; sample sizes decrease in the final column for some appliances because age data were not always decipherable. Note the particularly small freezer sample size.

Regardless of type, appliances on site were most often manufactured between 2006 and 2015 (Table 20). Average ages ranged from nine years for dehumidifiers to 15 years among the small sample of freezers. The Estimated Useful Life (EUL) of dehumidifiers (12 years) is somewhat higher than that of the average and median dehumidifier ages in the on-site sample (9 and 7 years, respectively).



| Year<br>Manufactured <sup>1</sup> | Refrigerator<br>(n=127) <sup>2</sup> | Freezer<br>(n=17) <sup>2</sup> | Clothes<br>Washer<br>(n=87) | Clothes<br>Dryer<br>(n=85) | Dishwasher<br>(n=71) | Dehumidifier<br>(n=55) <sup>2</sup> |
|-----------------------------------|--------------------------------------|--------------------------------|-----------------------------|----------------------------|----------------------|-------------------------------------|
| 2016 or newer                     | 10%                                  | 6%                             | 12%                         | 8%                         | 17%                  | 14%                                 |
| 2011 to 2015                      | 29%                                  | 18%                            | 27%                         | 23%                        | 42%                  | 54%                                 |
| 2006 to 2010                      | 23%                                  | 41%                            | 42%                         | 38%                        | 21%                  | 14%                                 |
| 2001 to 2005                      | 14%                                  | 12%                            | 9%                          | 16%                        | 10%                  | 10%                                 |
| 1991 to 2000                      | 19%                                  | 12%                            | 6%                          | 14%                        | 7%                   | 6%                                  |
| 1981 to 1990                      | 4%                                   | 6%                             | 4%                          | -                          | 3%                   | 3%                                  |
| 1980 or earlier                   | 2%                                   | 6%                             | -                           | 1%                         | 1%                   | -                                   |
| Age in Years                      |                                      |                                |                             |                            |                      |                                     |
| Average                           | 13                                   | 15                             | 11                          | 12                         | 10                   | 9                                   |
| Median                            | 11                                   | 11                             | 10                          | 11                         | 8                    | 7                                   |
| CT EUL <sup>3</sup>               | 12                                   | 11                             | 11                          | 11                         | 10                   | 12                                  |

#### **Table 20: Appliances – Ages** (Source: single-family on-site visits; n = 90)

<sup>1</sup> Age was indecipherable for some units.

<sup>2</sup> Percentages do not sum to 100% due to rounding.

<sup>3</sup> Source: 2018 CT Program Savings Document:

https://www.energizect.com/sites/default/files/2018-PSD-FINAL-121217.pdf.

### 3.4.3 Habits

Web-survey respondents most often washed their clothing in cold water, but cumulatively they used warm or hot water more than one-half of the time. On average, they reported that they used cold water for 48% of loads, warm water for 37% of loads, and hot water for 15% of loads (Table 21). Other habits reported during the web survey included the following; none of these were confirmed through metered data or on-site inspection:

- On average, respondents reported running 4.5 loads of laundry per week. In contrast, the 2018 Connecticut PSD specifies 295 loads per year. This equates to the default value ENERGY STAR appliance calculator uses (5.7 loads per week).<sup>21</sup>
- Respondents reported running 3.3 dishwasher cycles per week. The PSD specifies 215 cycles per year, equivalent to the ENERGY STAR assumption of 4.1 cycles per week.
- Respondents estimated that they used their microwave 3.1 times per day.<sup>22</sup>

<sup>&</sup>lt;sup>21</sup> Accessed April 16, 2019: <u>https://www.energystar.gov/sites/default/files/asset/document/appliance\_calculator.xlsx</u>.
<sup>22</sup> Laundry and microwave usage estimates included outlier values that might normally be excluded given that they were more than three standard deviations from the mean, but the analysis included them because they were associated with large households.



• Just over three quarters (77%) of respondents who had them, said they leave their dehumidifier on an automatic setting, so that it turns on only when the environment calls for it.

| (Sc                                                                              | ource: web-survey)          |                          |           |  |  |  |  |  |
|----------------------------------------------------------------------------------|-----------------------------|--------------------------|-----------|--|--|--|--|--|
| Habit                                                                            | Single-family,<br>1-4 units | Multifamily,<br>5+ units | Overall   |  |  |  |  |  |
| Laundry                                                                          | (n=1,749)                   | (n=677)                  | (n=2,426) |  |  |  |  |  |
| About what percent of the time do you wash [GR57] with hot, warm, or cold water? |                             |                          |           |  |  |  |  |  |
| Average % of time using cold                                                     | 49%                         | 42%                      | 48%       |  |  |  |  |  |
| Average % of time using warm                                                     | 38%                         | 35%                      | 37%       |  |  |  |  |  |
| Average % of time using hot                                                      | 13%                         | 23%                      | 15%       |  |  |  |  |  |
| Loads per week <sup>1</sup>                                                      |                             |                          |           |  |  |  |  |  |
| Average                                                                          | 4.8                         | 2.7                      | 4.5       |  |  |  |  |  |
| Median                                                                           | 4.0                         | 2.0                      | 4.0       |  |  |  |  |  |
| Standard deviation                                                               | 2.1                         | 3.5                      | 3.4       |  |  |  |  |  |
| Dishwasher (loads per week)                                                      | (n=1,362)                   | (n=540)                  | (n=1,902) |  |  |  |  |  |
| Average                                                                          | 3.3                         | 2.9                      | 3.3       |  |  |  |  |  |
| Median                                                                           | 3.0                         | 2.0                      | 3.0       |  |  |  |  |  |
| Standard deviation                                                               | 2.5                         | 2.2                      | 2.3       |  |  |  |  |  |
| Microwave (uses per day)                                                         | (n=1,689)                   | (n=650)                  | (n=2,339) |  |  |  |  |  |
| Average                                                                          | 3.2                         | 2.4                      | 3.1       |  |  |  |  |  |
| Median                                                                           | 3.0                         | 2.0                      | 3.0       |  |  |  |  |  |
| Standard deviation                                                               | 2.3                         | 3.1                      | 3.0       |  |  |  |  |  |
| Dehumidifier Setting (yes/no)                                                    | (n=779)                     | (n=74)                   | (n=853)   |  |  |  |  |  |
| % of respondents using automatic setting                                         | 79%                         | 50%                      | 77%       |  |  |  |  |  |

## **Table 21: Appliance Habits**

<sup>1</sup> Responses excluded if homeowner did not report having a clothes washer. Analysis also removed zero and don't know responses from the base.



### **3.6 CONSUMER ELECTRONICS**



- Computers: Laptops (85%) surpassed desktops in penetration (39%).
- Automation Devices: Automation devices (39%) were somewhat common; typically, they were most often connected to thermostats (45%), audio equipment (27%), and lighting (23%).
- > **APS:** Few customers had APS (4%). Examination of television and computer scenarios observed on site, it was clear that opportunities abounded.

### 3.6.1 Penetration

Estimates of penetration of consumer electronics come solely from web-survey results.

When asked about their consumer electronics, web-survey respondents most frequently reported having cell phones (98%), televisions (98%), and laptop computers (85%). As shown in Table 22, the average home had 2.13 cell phones, 2.39 televisions, 1.45 laptop computers (excluding tablets). Desktop computers were much less common than laptop computers, with penetration reported at only 59% and an average of 0.75 desktop computers per home. Tablet penetration (79%) also surpassed that of desktop computers – the average home had 1.33 tablets.<sup>23</sup>

While the majority of homes reported having modems (80%), routers (77%), and printers (76%), smaller shares had automation devices (39%) (e.g., Amazon Echo, Google Home, Apple Home Pod, etc.), and stand-alone sound equipment (24%). As shown in Table 22, penetration of most devices was higher among single-family homes than multifamily homes, particularly for automation devices and printers.

<sup>&</sup>lt;sup>23</sup> Customers estimated how often they left their computers and monitors plugged in, but standard deviations were too wide to draw conclusions.



| Device                                      | Single-I | Family, 1 | -4 units | Multif | amily, 5- | - units |       | Overall |       |
|---------------------------------------------|----------|-----------|----------|--------|-----------|---------|-------|---------|-------|
| Device                                      | n        | Pen.      | Units    | n      | Pen.      | Units   | n     | Pen.    | Units |
| Communication                               |          |           |          |        |           |         |       |         |       |
| Cell phone                                  | 1,727    | 98%       | 2.22     | 667    | 99%       | 1.70    | 2,394 | 98%     | 2.13  |
| Entertainment                               |          |           |          |        |           |         |       |         |       |
| Television                                  | 1,722    | 98%       | 2.52     | 660    | 97%       | 1.72    | 2,382 | 98%     | 2.39  |
| Tablet                                      | 1,556    | 79%       | 1.38     | 572    | 76%       | 1.07    | 2,128 | 79%     | 1.33  |
| Game console                                | 1,427    | 47%       | 0.74     | 496    | 45%       | 0.71    | 1,923 | 46%     | 0.74  |
| TV sound system                             | 1,433    | 45%       | 0.53     | 507    | 36%       | 0.41    | 1,940 | 43%     | 0.51  |
| Office                                      |          |           |          |        |           |         |       |         |       |
| Laptop                                      | 1,599    | 85%       | 1.48     | 609    | 85%       | 1.29    | 2,207 | 85%     | 1.45  |
| Monitor                                     | 1,450    | 62%       | 0.95     | 498    | 45%       | 0.55    | 1,948 | 59%     | 0.89  |
| Desktop computer                            | 1,474    | 61%       | 0.80     | 510    | 44%       | 0.49    | 1,984 | 59%     | 0.75  |
| Modem                                       | 1,749    | 81%       | N/A      | 677    | 74%       | N/A     | 2,426 | 80%     | N/A   |
| Router                                      | 1,749    | 79%       | N/A      | 677    | 67%       | N/A     | 2,426 | 77%     | N/A   |
| Printer                                     | 1,749    | 80%       | N/A      | 677    | 61%       | N/A     | 2,426 | 76%     | N/A   |
| Automation<br>device(s) <mark>[GR58]</mark> | 1,749    | 41%       | N/A      | 677    | 29%       | N/A     | 2,426 | 39%     | N/A   |
| Stand-alone sound<br>equipment[GR59]        | 1,749    | 25%       | N/A      | 677    | 22%       | N/A     | 2,426 | 24%     | N/A   |

### Table 22: Consumer Electronics – Penetration and Average Units per Household (Source: web-survey)<sup>1</sup>

Note: n = number of respondents; Pen. = penetration; Units = Average units per household <sup>1</sup> Percentages do not sum to 100% because homes had more than one device. Average units per home estimates include outlier values because including them had no impact.



Customers with automation devices most often reported that they had thermostats (45%), audio or Bluetooth devices (27%), and lighting (23%) connected to them (Table 23).

|                                    | (000.000.000.000.00)                   | /                                   |                    |
|------------------------------------|----------------------------------------|-------------------------------------|--------------------|
| Device                             | Single-family,<br>1-4 units<br>(n=706) | Multifamily,<br>5+ units<br>(n=225) | Overall<br>(n=931) |
| Thermostat                         | 47%                                    | 32%                                 | 45%                |
| Audio or Bluetooth devices         | 26%                                    | 36%                                 | 27%                |
| Lights                             | 24%                                    | 21%                                 | 23%                |
| Televisions                        | 14%                                    | 26%                                 | 16%                |
| Alarm system                       | 17%                                    | 4%                                  | 15%                |
| Security camera or baby monitor    | 12%                                    | 7%                                  | 11%                |
| Garage door                        | 11%                                    | 2%                                  | 10%                |
| Water heater                       | 4%                                     | 4%                                  | 4%                 |
| Kitchen appliances                 | 2%                                     | 5%                                  | 3%                 |
| Portable heating/cooling equipment | 2%                                     | 7%                                  | 3%                 |
| Clothes washer or dryer            | 1%                                     | 1%                                  | 1%                 |
| Other appliances                   | 10%                                    | 12%                                 | 10%                |
| Other electronics                  | 3%                                     | 2%                                  | 2%                 |

 Table 23: Consumer Electronics Connected to Automation Devices

 (Source: web-survey)<sup>1</sup>

<sup>1</sup> Percentages do not sum to 100% because homes had more than one device.

#### 3.6.2 Advanced Power Strips

Comparing on-site observations with web-survey responses implied that customers may have mistaken surge protectors or ordinary power strips for APS given that they have some visual similarities. While roughly three-fifths (61%) of respondents reported having APS installed in their homes, penetration was only 4% after being adjusted by on-site data.

As Table 24 shows, customers have 0.07 APS per home, on average, after applying adjustment factors. However, web-survey respondents reported having 1.73 APS per home, on average (not shown in table).[GR60]



## Table 24: Advanced Power Strips – Penetration and Average Units per Household

| (Source: web-surve | y and on-site visits |
|--------------------|----------------------|
|--------------------|----------------------|

| End-Use              | Single-Family, 1-4<br>units |      |       | Mul | Multifamily, 5+ units |       |       | Overall |       |  |
|----------------------|-----------------------------|------|-------|-----|-----------------------|-------|-------|---------|-------|--|
|                      | n                           | Pen. | Units | n   | Pen.                  | Units | n     | Pen.    | Units |  |
| Advanced power strip | 1,556                       | 4%   | 0.05  | 592 | 4%                    | 0.07  | 2,148 | 4%      | 0.07  |  |

Note: n = number of respondents; Pen. = penetration; Units = Average units per household; **Blue text** indicates that an adjustment factor was applied.

Based on on-site observations, nearly all homes (97%) had at least one set of electronics with peripheral devices based either around a television or a computer.

The 227 on-site homes had 394 home entertainment centers (HECs), in total.<sup>24</sup>

- Most homes (94%) had at least one HEC, and roughly one-half (55%) had more than one. HECs had an average of 2.3 periphery devices.
- Only 2% of HECs (nine HECs at nine homes) were connected to an APS,<sup>25</sup> yet the average home had 2.0 opportunities to use an APS with HECs.
- APS manufacturers recommend plugging in set-top-boxes (STBs). When excluding STBs, fewer homes (87%) had at least one HEC and the average number of periphery devices decreased to 2.0 periphery devices per HEC.

Table 25 presents HEC sizes by showing the proportion of televisions and homes associated with the specified count of peripheral devices. The majority of televisions (88%) could benefit from an APS because they had at least one peripheral device and nearly one-third of televisions (30%) had three or more peripheral devices. However, excluding STBs reduces these proportions to 71% and 20%, respectively.

<sup>&</sup>lt;sup>25</sup> Overall APS penetration is higher because this value is a measurement of penetration of APS among HECs (not homes), so the base is different.



<sup>&</sup>lt;sup>24</sup> An HEC consists of a television connected to at least one periphery electronic such as set-top boxes, DVD players, VCRs, or game consoles.

| Count of              | Single-Family, 1-4 units |                     |                                      | Multifamily, 5+ units |                        |                                       | Overall                      |                        |                                       |
|-----------------------|--------------------------|---------------------|--------------------------------------|-----------------------|------------------------|---------------------------------------|------------------------------|------------------------|---------------------------------------|
| Peripheral<br>Devices | Count of<br>TVs          | % of TVs<br>(n=250) | % of<br>Homes <sup>1</sup><br>(n=90) | Count<br>of TVs       | % of<br>TVs<br>(n=196) | % of<br>Homes <sup>1</sup><br>(n=137) | Count<br>of TVs <sup>1</sup> | % of<br>TVs<br>(n=446) | % of<br>Homes <sup>1</sup><br>(n=227) |
| Including S           | TBs                      |                     |                                      |                       |                        |                                       |                              |                        |                                       |
| None                  | 30                       | 12%                 | 30%                                  | 22                    | 11%                    | 15%                                   | 52                           | 12%                    | 23%                                   |
| 1                     | 74                       | 28%                 | 55%                                  | 55                    | 30%                    | 38%                                   | 129                          | 29%                    | 47%                                   |
| 2                     | 76                       | 31%                 | 56%                                  | 54                    | 26%                    | 35%                                   | 130                          | 30%                    | 46%                                   |
| 3                     | 33                       | 13%                 | 34%                                  | 39                    | 18%                    | 25%                                   | 72                           | 15%                    | 30%                                   |
| 4                     | 19                       | 7%                  | 20%                                  | 17                    | 10%                    | 15%                                   | 36                           | 8%                     | 18%                                   |
| 5                     | 13                       | 6%                  | 18%                                  | 5                     | 2%                     | 3%                                    | 18                           | 5%                     | 11%                                   |
| 6 or more             | 5                        | 2%                  | 5%                                   | 4                     | 2%                     | 3%                                    | 9                            | 2%                     | 4%                                    |
| Excluding             | STBs                     |                     |                                      |                       |                        |                                       |                              |                        |                                       |
| None                  | 76                       | 29%                 | 57%                                  | 56                    | 27%                    | 32%                                   | 132                          | 29%                    | 45%                                   |
| 1                     | 80                       | 30%                 | 56%                                  | 61                    | 33%                    | 44%                                   | 141                          | 31%                    | 50%                                   |
| 2                     | 48                       | 22%                 | 48%                                  | 37                    | 19%                    | 27%                                   | 85                           | 21%                    | 38%                                   |
| 3                     | 24                       | 9%                  | 23%                                  | 29                    | 15%                    | 22%                                   | 53                           | 11%                    | 22%                                   |
| 4                     | 14                       | 6%                  | 18%                                  | 7                     | 3%                     | 4%                                    | 21                           | 5%                     | 11%                                   |
| 5                     | 7                        | 3%                  | 9%                                   | 4                     | 3%                     | 4%                                    | 11                           | 3%                     | 7%                                    |
| 6 or more             | 1                        | <1%                 | 1%                                   | 2                     | 1%                     | 1%                                    | 3                            | <1%                    | 1%                                    |

## **Table 25: Home Entertainment Center Sizes**

(Source: on-site visits)

<sup>1</sup> Sums to more than 100% because some homes had more than one television.

The 227 on-site homes had 142 computer hubs in total.<sup>26</sup>

- Roughly one-half (51%) of homes had at least one computer hub, with only a small share (13%) having more than one computer hub.
- Only 5% of computer hubs (seven hubs at six homes) were connected to an APS,<sup>27</sup> yet the average home had 1.3 opportunities to use APS with their computers.
- On average, homes had 2.7 peripheral devices per computer hub.

Table 26 shows the proportion of computers and homes associated with the specified count of peripheral devices. Slightly more than two-thirds of computers (69%) could benefit from an APS

hubs (not homes), so the bases are different.



<sup>&</sup>lt;sup>26</sup> A computer *hub* consists of a computer connected to at least one periphery electronic such as printers/scanners, external hard drives, monitors, modems, or routers. <sup>27</sup> Overall APS penetration is lower because this value is a measurement of penetration of APS among computer

because they had at least one peripheral device, and about one-third of computers (34%) had three or more peripheral devices.

|                       |                          |                        | `                                    |                       | ,                     |                                       |                 |                        |                                       |
|-----------------------|--------------------------|------------------------|--------------------------------------|-----------------------|-----------------------|---------------------------------------|-----------------|------------------------|---------------------------------------|
| Count of              | Single-Family, 1-4 units |                        |                                      | Multifamily, 5+ units |                       |                                       | Overall         |                        |                                       |
| Peripheral<br>Devices | Count<br>of PCs          | % of<br>PCs<br>(n=121) | % of<br>Homes <sup>1</sup><br>(n=90) | Count<br>of PCs       | % of<br>PCs<br>(n=84) | % of<br>Homes <sup>1</sup><br>(n=137) | Count<br>of PCs | % of<br>PCs<br>(n=205) | % of<br>Homes <sup>1</sup><br>(n=227) |
| None                  | 39                       | 34%                    | 44%                                  | 24                    | 18%                   | 9%                                    | 63              | 29%                    | 27%                                   |
| 1                     | 16                       | 13%                    | 18%                                  | 19                    | 25%                   | 15%                                   | 35              | 17%                    | 16%                                   |
| 2                     | 19                       | 14%                    | 20%                                  | 19                    | 26%                   | 15%                                   | 38              | 17%                    | 17%                                   |
| 3                     | 25                       | 21%                    | 27%                                  | 11                    | 15%                   | 9%                                    | 36              | 19%                    | 18%                                   |
| 4                     | 13                       | 11%                    | 16%                                  | 5                     | 9%                    | 6%                                    | 18              | 11%                    | 11%                                   |
| 5                     | 5                        | 4%                     | 5%                                   | 4                     | 6%                    | 4%                                    | 9               | 4%                     | 4%                                    |
| 6 or more             | 4                        | 3%                     | 5%                                   | 2                     | 1%                    | 1%                                    | 6               | 3%                     | 3%                                    |

#### Table 26: Computer Hub Sizes (Source: on-site visits)

<sup>1</sup> Sum to more than 100% because some homes had more than one computer or less than 100% because some homes had no computers.

Note: PC = computer

## 3.7 LIGHTING



- Efficiency: In 2012, LEDs and CFLs filled two-fifths (28%) of all sockets; in 2018, LEDs and CFLs filled three-fifths (56% [GR61]) of sockets. At the same time, inefficient bulb (halogen and incandescent) saturation decreased from 58% to 36%.
- LED Penetration and Saturation: LED penetration in Connecticut homes increased dramatically from 2012 (13%) to 2018 (83%). Similarly, LED saturation increased tenfold (2% to 26%).<sup>28</sup>
- Regional Comparison: In 2018 LED saturation in Connecticut (26%) was lower than in neighboring states Rhode Island (33%) and Massachusetts (31% - average of 2017 and 2018), both of which have LED programs.<sup>29</sup> In[GR62] fact, ENERGY STAR-qualified LED saturation in Connecticut (12%) was similar to the New York comparison area (10%) which did not have an upstream LED program.

<sup>&</sup>lt;sup>29</sup> As discussed more in Section 3.7.2, the Rhode Island study was conducted at the same time as Connecticut. The Massachusetts and New York studies were conducted in late 2017 and late 2018, approximately six months before and six months after the 2018 Connecticut and Rhode Island visits.



<sup>&</sup>lt;sup>28</sup> The sample included electric customers only in the Companies' territory. For purposes of brevity in the lighting analysis, the Companies' territories are referred to as "Connecticut," despite the fact that the sample does not span the entire state.

Storage: Customers had an average of ten bulbs in storage. On average, two were LEDs.

## 3.7.1 Cross-Year Comparison

As shown in Table 27, on-site visit results showed that LED bulbs filled more than one-quarter (26%) of sockets in Connecticut in 2018. LED saturation significantly increased from 2012, when NMR found that only 2% of sockets held LEDs.<sup>30</sup> Overall, efficient bulbs (LEDs and CFLs combined) filled about three-fifthsmore than half (55%) of sockets in 2018 – representing an increase from 2012 when only a little more than a quarter two-fifths (28%) [GR63] of sockets had efficient bulbs.

In 2018, the average home had 10.2 lightbulbs in storage, with 2.1 of them being LEDs. Nearly one-half (46%) of stored bulbs were incandescent – more than double the shares represented by LEDs (20%) and CFLs (20%). However, the current incandescent storage rate is a sizable decrease from 2012 when close to two-thirds (64%) of bulbs in storage were incandescent.

| Bulb Type <sup>1</sup> | Satu<br>(% of S   | ration<br>lockets) | Storage<br>(% of Bulbs) |                   |  |  |  |
|------------------------|-------------------|--------------------|-------------------------|-------------------|--|--|--|
|                        | 2012<br>(n=6,202) | 2018<br>(n=10,336) | 2012<br>(n=1,657)       | 2018<br>(n=2,308) |  |  |  |
| Incandescent           | 49%               | 27%                | 64%                     | 46%               |  |  |  |
| CFL                    | 26%               | 29%                | 29%                     | 20%               |  |  |  |
| LED                    | 2%                | 26%                | 1%                      | 20%               |  |  |  |
| Halogen                | 9%                | 9%                 | 4%                      | 11%               |  |  |  |

# Table 27: Lighting Saturation and Storage by Year and Bulb Type GR64] (Source: NMR 2012 and R1616/R1708 on-site visits)

<sup>1</sup> Percentages do not sum to 100% because uncommon bulbs or empty sockets are not shown.[GR65]

In the seven-year period, LED penetration increased from 13% in 2012 to 83% in 2018. In contrast, incandescent penetration dropped from 100% to meet the current LED penetration. Albeit less dramatically, CFL penetration also decreased (94% to 88%).

## 3.7.2 Regional Comparison

Based on benchmarking with other recent saturation studies, it appears that the Connecticut lighting program may not have as much impact on LED sales as programs in neighboring states. At roughly the same time the Connecticut on-site visits were underway (April and May 2018),

<sup>&</sup>lt;sup>30</sup> NMR. "Connecticut Efficient Lighting Saturation and Market Assessment." October 2, 2012. Accessed at: <u>https://www.energizect.com/sites/default/files/FINAL%20EISA%20Lighting%20Saturation%20and%20Market%20Ass</u> <u>essment%20Report%20100212\_pdf.pdf</u>.



NMR fielded a nearly identical data collection effort in Rhode Island.<sup>31</sup> Several months before that (October through December 2017), NMR collected the same data points in New York and Massachusetts.<sup>32</sup> Then, NMR visited New York and Massachusetts homes again at the end of 2018 (October through December 2018) and collected the same data. To ease comparison and provide an estimate of the Massachusetts and New York values at a time that coincides with the Connecticut and Rhode Island visits, the study averaged the results of the 2017 and 2018 visits in Massachusetts and New York.<sup>33</sup> Appendix D provides the separate saturation estimates for each visit.

As shown in Figure 2, LED saturation in Connecticut (25%) was lower than in Rhode Island (33%) or Massachusetts (31%), but higher than in New York (18%). It should be noted that CFL saturation in Connecticut (29%, not shown in Figure 2) remained higher than all other areas visited. CFL saturation in Rhode Island was 22%, 25% in Massachusetts, and 20% in New York. However, the combined CFL and LED saturation of 55% is identical in Connecticut, Rhode Island, and Massachusetts, well ahead of the 37% in New York. [GR66] The current study does not provide ample evidence to explain Connecticut's higher CFL and lower LED saturation compared to Massachusetts and Rhode Island. This topic will likely be explored in the forthcoming *R1963 Short-term Residential Lighting Analysis*.

Like Massachusetts and Rhode Island, Connecticut programs provide incentives only for ENERGY STAR-qualified LEDs (New York does not). ENERGY STAR-qualified LED saturation was statistically significantly higher in Rhode Island (24%) and Massachusetts in 2018 (20%) than in Connecticut (12%).<sup>34</sup> While Connecticut ENERGY STAR-qualified LED saturation in 2018 was greater than the average of the two New York visits (8%), New York's ENERGY STAR-qualified LED saturation doubled from 5% to 10% between 2017 and 2018.

<sup>&</sup>lt;sup>34</sup> While on site, technicians collected model numbers for all screw-base LED bulbs (not integrated LED fixtures). Comparing these model numbers with the list of ENERGY STAR-qualified LED bulbs determined the ENERGY STAR status for each LED bulb.



<sup>&</sup>lt;sup>31</sup> NMR. "RI2311 National Grid Rhode Island Lighting Market Assessment." July 27, 2018. Accessed at: <u>http://www.ripuc.org/eventsactions/docket/5.%20RI2311%20RASS%20Lighting%20Report%20Final%2027July2018.</u> pdf

<sup>&</sup>lt;sup>32</sup> NMR. "RLPNC Study 17-9 2017-2018 Residential Lighting Market Assessment Study." March 28, 2018. Accessed at: <u>http://ma-eeac.org/wordpress/wp-content/uploads/RLPNC 179 LtgMarketAssessment 28March2018 FINAL-1.pdf</u>.

<sup>&</sup>lt;sup>33</sup> There are two drawbacks of taking the average of the 2017 and 2018 Massachusetts and New York visits. First, this assumes a constant rate of lighting purchases over the year, rather than reflecting the seasonality of lighting purchases. Second, the averages downplay the rapid changes in saturation between 2017 and 2018 seen in both states, which could present lessons for the Connecticut experience. Reporting the 2017 and 2018 values separately in Appendix D helps to address these two shortcomings.



## Figure 2: ENERGY STAR LED Saturation in 2018 by State

(Source: on-site visits)

Note: Massachusetts and New York data collection occurred in two phases: first at the end of 2017 (October through December) and then at the end of 2018 (October through December). Connecticut and Rhode Island data collection occurred roughly mid-way between (April and May 2018).

LED storage patterns were fairly similar across states. Appendix D provides the full on-site results of lighting saturation, penetration, and storage and comparisons across territories.

## 3.8 MISCELLANEOUS END USES



- Vehicles and Solar: Electric (2%) and plug-in hybrid (1%) vehicles and solar panels (2%) had not penetrated the market. Fourteen percent of those with solar panels had energy-storage batteries.[GR67]
- Common End Uses: Nearly one in five homes had well pumps (19%) and sump pumps (17%).
- Others: Primarily fueled by propane (41%) or gasoline (29%), whole home generators were uncommon (6%).

#### Penetration of miscellaneous end uses comes solely from web-survey responses.[GR68]

Only 2% of customers reported having electric cars and 1% had plug-in hybrid cars (Table 28). Similarly, only 2% of customers, primarily single-family, reported having photovoltaic (PV) solar panels. Based on web-survey respondents' attempts to estimate the capacity or size of their panels, the average installed capacity among that subset of customers was 7 kW (not shown).



Fourteen percent of customers with solar panels reported they had energy-storage batteries to accompany their panels.

| End-Use                   | Single-Family,<br>1-4 units |      | Multifamily,<br>5+ units |     |                   | Overall |       |      |       |
|---------------------------|-----------------------------|------|--------------------------|-----|-------------------|---------|-------|------|-------|
|                           | n                           | Pen. | Units                    | n   | Pen. <sup>2</sup> | Units   | n     | Pen. | Units |
| Electric-only vehicle     | 1,749                       | 2%   | 0.04                     | 677 | <1%               | 0.02    | 2,426 | 2%   | 0.04  |
| Plug-in hybrid<br>vehicle | 1,749                       | 1%   | 0.02                     | 677 | <1%               | 0.02    | 2,426 | 1%   | 0.01  |
| PV panels <sup>1</sup>    | 1,749                       | 1%   | n/a                      | 677 | 1%                | n/a     | 2,426 | 2%   | n/a   |
| Energy-storage            | 1,749                       | <1%  | <0.01                    | 677 | -                 | -       | 2,246 | <1%  | <0.01 |

# Table 28: Vehicles and Solar – Penetration and Average Units per Household (Source: web-survey)

Note: n = number of respondents; Pen. = penetration; Units = Average units per household

<sup>1</sup> Verified on site.

When presented with a list of common miscellaneous measures, customers most often reported having well pumps (19%) and sump pumps (17%), although penetration was driven by single-family homes (Table 29). A small percentage (6%) reported having whole-home generators; of those 118 respondents, 41% used bottled gas such as propane, while others mainly used gasoline (29%) and natural gas (19%) to fuel the generators.

### **Table 29: Miscellaneous Measure Penetration Rates**

#### (Source: web-survey)1

| End-Use              | Single-family,<br>1-4 units<br>(n=1,749) | Multifamily,<br>5+ units<br>(n=677) | Overall<br>(n=2,426) |
|----------------------|------------------------------------------|-------------------------------------|----------------------|
| Well pump            | 23%                                      | -                                   | 19%                  |
| Sump pump            | 20%                                      | 1%                                  | 17%                  |
| Pool                 | 9%                                       | 5%                                  | 9%                   |
| Whole-home generator | 7%                                       | 1%                                  | 6%                   |
| Spa                  | 5%                                       | -                                   | 4%                   |
| Aquarium             | 4%                                       | 1%                                  | 3%                   |
| Heated waterbed      | 1%                                       | 1%                                  | 1%                   |

<sup>1</sup> Percentages do not sum to 100% because homes had more than one end use.

Respondents listed other equipment in their homes that they estimated used a great deal of energy. Most frequently they mentioned power tools and/or air compressors (2%) and medical equipment (1%). Others listed end uses such as musical and pet equipment (e.g., reptile heat lamps, fish tanks, etc.).



## Section 4 Building Characteristics



- Insulation Status: Nearly one-quarter (23%) of predominant walls in single-family homes had little-to-no insulation – an unintuitive increase from the values seen in 2011 (14%), signaling results should be interpreted cautiously given differences between methodologies.
- Insulation Material: Predominant walls in single-family homes were most often insulated with FGB (66%), and predominant flat and vaulted ceilings were most often insulated with FGB or rockwool (64% for flat ceilings and 78% for vaulted).
- Windows: The main windows in single-family homes were commonly double-pane (85%) and most often made of vinyl (64%). About two-fifths (43%) had low-E coatings.[GR69]
- Ducts: Varying slightly between supply versus return ducts, basements ducts were uninsulated in roughly one-half of single-family homes, while attic ducts were uninsulated in about one-third of single-family homes.

## 4.1 BUILDING SHELL

Building shells assessments come solely from on-site visit results. This report assesses those data from single-family on-site visits (the R1705/R1609 study provides a comprehensive weatherization assessment for multifamily homes).

Given that end-use saturation was this study's primary goal, weatherization assessments were a secondary priority for single-family on-site visits. Unlike the 2011 R5 study, this study did not use HERS raters to perform exhaustive examinations of insulation levels. Instead, this study used a more cursory approach, where trained technicians (who were not HERS raters) attempted to identify the predominant insulation type and amount by assessing insulation at pre-existing penetrations or in accessible cavities.<sup>35</sup> This exercise produced an assessment that nearly one-quarter of single-family homes (23%) had little-to-no insulation in their predominant above-grade walls (Table 30). [GR70]We suspect that these assessments may overstate the instances of low levels of wall insulation. In this study, a cursory inspection of walls with poorly installed or thin and degraded insulation might yield an assessment of the walls being uninsulated, whereas in a full HERS rating that measured all walls, there would be more opportunity for additional investigation of insulation levels.

<sup>&</sup>lt;sup>35</sup> Wall assessments were made, for example, by inspecting and probing for insulation at pre-existing penetrations (e.g., surrounding electrical outlet boxes) in the main walls of the home, ignoring any smaller, renovated home portions. In some cases, this outlet probing will not provide a sufficient perspective to fully identify wall insulation, particularly in the case of old and degraded insulation or poorly installed insulation that may not be installed flush to electrical boxes. While HERS ratings inspect and measure all the walls in the home, sometimes with diagnostic tools, for budgetary reasons this study was limited to simpler assessments of predominant building assemblies.



The 2011 R5 study was a comprehensive weatherization study. This 2018 study used a less comprehensive approach in assessing building shell and duct characteristics, making direct comparisons between the studies challenging. Specifically, the 2011 study used equipment (such as infrared cameras, blower doors, and duct blasters) and assessed all walls, ceilings, windows, and ducts to measure and characterize area, efficiency level, and material. In contrast, the 2018 study – with a different budget and scope – was limited to assessing "dominant" walls, windows, and ducts. Moreover, the 2011 on-site sample size (n=180) was twice that of 2018 (n=90). Lastly, in 2011, NMR assigned Home Energy Rating System (HERS) index value for all homes visited. With a lower budget in 2018, NMR did not collect all of the data necessary, nor use certified HERS raters, which would have been necessary to assign HERS index values. Insulation rates represent the most questionable comparison between studies, because after revisiting 2011 raw data, it appeared that 14% of predominant walls in those homes had little-to-no insulation, compared to 23% of homes in the 2018 study. Some of this difference may be due to sampling error, and as previously discussed, some of the difference may also come from the difference in the inspection approach.

Among homes where auditors were able to observe wall insulation, most homes had FGB insulation (66%) in their predominant walls, slightly down from 74% in the 2011 study. No single R-value dominated the 2018 sample of above-grade wall insulation, and only 2% of homes had relatively high R-values (R-21 or greater).

|                             |                 | ,              |
|-----------------------------|-----------------|----------------|
| Predominant Wall            | 2011<br>(n=180) | 2018<br>(n=90) |
| Little-to-no insulation     | 14%             | 23%            |
| Туре <sup>1</sup>           |                 |                |
| FGB                         | 74%             | 66%            |
| Dense pack cellulose        | 3%              | 4%             |
| Open-cell spray foam        | 1%              | 3%             |
| FGB and rigid foam          | 5%              | 3%             |
| Rock wool batts             | 1%              | 2%             |
| R-value <sup>2</sup> [GR71] |                 |                |
| 1 to 10                     | n/a             | 30%            |
| 11 to 13                    | n/a             | 23%            |
| 14 to 18                    | n/a             | 3%             |
| 19 to 21                    | n/a             | 19%            |
| 21 or greater               | n/a             | 2%             |

#### Table 30: Above-Grade Wall Insulation – Primary Type and R-Value by Year (Sources: single-family on-site visits)

<sup>1</sup> Drawn from original 2011 data; not shown in R5 report. Rows excludes blown-in FGB, found only in 2011 (2%). Totals do not always sum to 100% due to rounding.



<sup>2</sup> Given the nature of 2011 data collection, R-values for "predominant" wall were less comparable.

As shown in Table 31, only a small share of single-family ceilings had little-to-no insulation; in fact, the proportion of predominant flat ceilings with little-to-no insulation decreased in the 2018 study relative to the 2011 study (18% versus 6%). Like in 2011, among insulated assemblies, FGB or rockwool were the dominant insulation type in both flat (attic space) and vaulted (no attic space) ceilings in 2018. Together, in 2018, those materials comprised nearly two-thirds of flat (64%) and more than three-quarters of vaulted (78%) predominant ceiling insulation. Most commonly, insulation was between R-14 and R-29.

|                                  | Fla           | at          | Vaulted       |             |  |
|----------------------------------|---------------|-------------|---------------|-------------|--|
| Predominant Ceiling'             | 2011 (n=174)² | 2018 (n=79) | 2011 (n=107)² | 2018 (n=21) |  |
| Little-to-no insulation          | 18%           | 6%          | 7%            | 10%         |  |
| Туре                             |               |             |               |             |  |
| FGB or rockwool                  | 56%           | 64%         | 77%           | 78%         |  |
| Blown-in fiberglass or cellulose | 14%           | 15%         | 6%            | 3%          |  |
| FGB and blown-in/other           | 11%           | 16%         | 8%            | -           |  |
| Other (not FGB or blown-in)      | 1%            | -           | 3%            | 10%         |  |
| R-Value[GR72]                    |               |             |               |             |  |
| 1 to 13                          | n/a           | 18%         | n/a           | 10%         |  |
| 14 to 29                         | n/a           | 45%         | n/a           | 53%         |  |
| 30 to 49                         | n/a           | 30%         | n/a           | 16%         |  |
| 50 or greater                    | n/a           | 1%          | n/a           | 11%         |  |

## Table 31: Ceiling Insulation – Primary Type and R-Value by Year

(Sources: single-family on-site visits)

<sup>1</sup> The insulation types and R-values shown represent the assembly that comprises the largest ceiling area of the home. Totals do not always sum to 100% due to rounding.

<sup>2</sup> Drawn from original 2011 data; not shown in R5 report.

Over four-fifths (85%) of single-family homes have double-pane glazing in the majority of their windows, and about two-fifths (43%) utilized a low-E coating (Table 32[GR73]). Window framing was most often vinyl (64%) or wood (32%).



#### Table 32: Windows – Primary Glazing and Framing Type

(Source: single-family on-site visits; n = 90)

| Material                                 | Proportion of Homes |
|------------------------------------------|---------------------|
| Glazing <sup>1</sup>                     |                     |
| Double-pane                              | 44%                 |
| Double-pane, lo <u>w</u> -E              | 39%                 |
| Single-pane                              | 14%                 |
| Double-pane, lo <u>w</u> -E, gas filled  | 2%                  |
| Triple- pane, lo <u>w</u> -E, gas filled | 2%[GR74]            |
| Frame                                    |                     |
| Vinyl                                    | 64%                 |
| Wood                                     | 32%                 |
| Metal                                    | 2%                  |
| Fiberglass                               | 2%                  |

<sup>1</sup> Totals do not sum to 100% due to rounding.

## **4.2 DUCTS**

Almost all ducts observed on site in single-family homes were in unconditioned basements or in attics, exposed above attic insulation; uninsulated ducts were common, as were ducts in the R-6 to R-10 range (Table 33). Basement ducts were uninsulated in roughly one-half of homes, while attic ducts were uninsulated in about one-third of homes.<sup>36</sup>

<sup>&</sup>lt;sup>36</sup> It would require deeper investigation into raw R5 data to provide a fair comparison, but in 2011, 33% of supply and 44% of return ducts were uninsulated. These do not vary dramatically from the general results in 2018.



#### Table 33: Ducts – Predominant Insulation R-value

| (Source: | single-family | on-site visits:  | n = 90) |
|----------|---------------|------------------|---------|
| (000100) | Single farmy  | 011 0110 110110, | 11 00)  |

| Location                 | Supply Ducts<br>(n=77) | Return Ducts<br>(n=74) |
|--------------------------|------------------------|------------------------|
| Unconditioned Basement   | (n=39)                 | (n=39)                 |
| Uninsulated              | 51%                    | 53%                    |
| 1 to 5                   | 10%                    | 12%                    |
| 6 to 10                  | 37%                    | 30%                    |
| 10 or greater            | 2%                     | 5%                     |
| Attic (over insulation)  | (n=35)                 | (n=32)                 |
| Uninsulated              | 32%                    | 33%                    |
| 1 to 5                   | 13%                    | 9%                     |
| 6 to 10                  | 51%                    | 44%                    |
| 10 or greater            | 5%                     | 14%                    |
| Attic (under insulation) | (n=1)                  | (n=1)                  |
| Uninsulated              | -                      | -                      |
| 1 to 5                   | -                      | -                      |
| 6 to 10                  | 100% (1)               | 100% (1)               |
| 10 or greater            | -                      | -                      |
| Enclosed Crawlspace      | (n=2)                  | (n=2)                  |
| Uninsulated              | -                      | 50% (1)                |
| 1 to 5                   | -                      | -                      |
| 6 to 10                  | 100% (2)               | 50% (1)                |
| 10 or greater            | _                      | <u>_</u>               |

## 4.3 TYPE, AGE, AND SIZE

As planned, the web-survey and on-site visits oversampled multifamily dwellings with five or more units to support the *R1705/R1609* study leading to discrepancies in sampled dwelling types compared to the population.<sup>37</sup> Weights <u>accounted adjusted</u> for these discrepancies. Table 34 compares the samples with the population.

<sup>&</sup>lt;sup>37</sup> The weighting approach accounted for this discrepancy (see Appendix B.1).



| Dwelling Type           | Web-Survey<br>Responses (n=2,426) <sup>1</sup> | On-Site Observations<br>(n=227) | Population<br>(n=1,354,713) <sup>2</sup> |
|-------------------------|------------------------------------------------|---------------------------------|------------------------------------------|
| Single-family detached  | 47%                                            | 24%                             | 61%                                      |
| Multifamily (≥ 5 units) | 28%                                            | 60%                             | 17%                                      |
| Multifamily (2-4 units) | 17%                                            | 10%                             | 16%                                      |
| Single-family attached  | 9%                                             | 6%                              | 6%                                       |
| 1                       |                                                |                                 |                                          |

### Table 34: Dwelling Type (Unweighted)

<sup>1</sup> Percentages do not sum to 100% due to rounding.

<sup>2</sup> Source: U.S. Census Bureau. ACS 2012-2016. Proportions are based on occupied housing units.

The population of multifamily buildings in Connecticut (80%) was older than the web survey (47%) and on-site (38%) multifamily samples, with more homes built before 1990. The single-family onsite sample somewhat overrepresented older homes (pre-1950) as compared to the Connecticut population (42% and 30%, respectively); as such, results drawn solely from on-site visits (versus web-sample-related results) are weighted by age.

## Table 35: Home Age by Dwelling Type (Unweighted)

|               | Sing                        | le-Family, 1-4                                  | units                                          | Multifamily, 5+ units     |                                     |                                             |  |
|---------------|-----------------------------|-------------------------------------------------|------------------------------------------------|---------------------------|-------------------------------------|---------------------------------------------|--|
| Year Built    | Web-<br>Survey<br>(n=1,610) | On-Site<br>Observatio<br>ns (n=87) <sup>1</sup> | Population<br>(n=1,121,76<br>7) <sup>1,2</sup> | Web-<br>Survey<br>(n=502) | On-Site<br>Observatio<br>ns (n=132) | Population<br>(n=232,946)<br><sup>1,2</sup> |  |
| Before 1920   | 15%                         | 18%                                             | 200/                                           | 3%                        | 6%                                  |                                             |  |
| 1920 to 1949  | 16%                         | 24%                                             | 30% -                                          | 5%                        | 5%                                  | 21%                                         |  |
| 1950 to 1979  | 38%                         | 30%                                             | 43%                                            | 23%                       | 21%                                 | 41%                                         |  |
| 1980 to 1989  | 14%                         | 9%                                              | 12%                                            | 16%                       | 5%                                  | 18%                                         |  |
| 1990 to 1999  | 8%                          | 7%                                              | 8%                                             | 4%                        | 4%                                  | 9%                                          |  |
| 2000 to 2010  | 6%                          | 8%                                              | 7%                                             | 9%                        | 12%                                 | 9%                                          |  |
| 2011 to 2014  | 2%                          | 2%                                              | 1%                                             | 15%                       | 8%                                  | 2%                                          |  |
| 2015 or after | 1%                          | 1%                                              | <1%                                            | 25%                       | 39%                                 | <1%                                         |  |

(Source: web survey, on-site visits, and U.S. Census)

<sup>1</sup> Percentages do not sum to 100% due to rounding.

<sup>2</sup> Source: U.S. Census Bureau. ACS 2012-2016. Proportions are based on occupied housing units. The earliest age in Census home age classification is 1939 or earlier.

<sup>3</sup> More than 300 web-survey respondents did not know the age of their home, so counts are lower.

The average web-survey respondent estimated that their home's conditioned floor area [GR75] was 1,689 sq. ft. (Table 36). Single-family respondents most often estimated that their homes were between 1,000 and 2,000 square feet (51%), while the majority of multifamily respondents estimated that their units were between 500 and 1,500 sq. ft. (80%). Single-family on-site visits did not include measurement of conditioned floor area.



| (Source: web-survey) |                                       |                                               |                      |  |  |  |  |
|----------------------|---------------------------------------|-----------------------------------------------|----------------------|--|--|--|--|
| Square Feet          | Single-family, 1-4 units<br>(n=1,508) | Multifamily, 5+ units<br>(n=564) <sup>1</sup> | Overall<br>(n=2,072) |  |  |  |  |
| Less than 500        | 2%                                    | 13%                                           | 4%                   |  |  |  |  |
| 500 to 749           | 3%                                    | 21%                                           | 6%                   |  |  |  |  |
| 750 to 999           | 9%                                    | 31%                                           | 12%                  |  |  |  |  |
| 1,000 to 1,499       | 28%                                   | 28%                                           | 28%                  |  |  |  |  |
| 1,500 to 1,999       | 24%                                   | 4%                                            | 21%                  |  |  |  |  |
| 2,000 to 2,499       | 17%                                   | 1%                                            | 14%                  |  |  |  |  |
| 2,500 to 2,999       | 10%                                   | 1%                                            | 8%                   |  |  |  |  |
| 3,000 to 3,999       | 6%                                    | <1%                                           | 5%                   |  |  |  |  |
| 4,000 or more        | 1%                                    | 1%                                            | 1%                   |  |  |  |  |
| Average <sup>2</sup> | 1,811                                 | 966                                           | 1,689                |  |  |  |  |

## Table 36: Conditioned Floor Area

<sup>1</sup> The multifamily study measured actual building size on site (results not presented here).

<sup>2</sup> Some respondents could only estimate a range, so sample sizes are lower.



## Section 5 Demographics

The web survey asked customers demographic questions – adjustment factors do not apply because on-site verification visits did not address demographics. The following offer a snapshot of the respondent demographics (weighted):

- Similar to Census statistics for Connecticut, roughly <u>onethree</u>-quarters of survey respondents lived in Hartford (25%), Fairfield (23%), and New Haven (26%) counties.
- The vast majority (98%) were answering questions about their primary residence. The average single-family respondent had lived in their home for 19 years while the average multifamily respondent had lived in theirs for almost eight years.
- Respondents (63%), like Census households (62%), were most likely to live in homes with two or fewer occupants. Excluding refusals, multifamily household sizes were noticeably smaller than that of single-family households – 71% of multifamily homes consisted of one or two occupants while 53% of single-family homes had one or two occupants.
- For the most part, homes were equally as likely to have children as they were to have occupants in any other age bracket under 75. However, single-family homes were more likely to have children than multifamily homes bearing in mind that the average single-family household was larger (2.6 versus 1.9 occupants).
- Nearly three-quarters (72%) of survey respondents owned their homes. This is somewhat higher that Census statistics for Connecticut (66%). Single-family occupants (83%) were roughly four times as likely as multifamily occupants (21%) to own their homes.
- Excluding respondents who refused to answer, nearly one-half (46%) of survey respondents confirmed that their gross household income in 2017 was less than 60% of the area [GR76]median income (AMI).<sup>38</sup> This is higher than Census data which reports that about one-third (34%) of the population are considered low-income. Before weighting results, however, a little more than one-fourth (27%) of respondents were confirmed low-income; the weighting approach described in Appendix B.1 adjusted for this underrepresentation[GR77].
- Considerably more survey respondents (58%) attained their bachelor's degree or more education when compared to the population (40%). Weights corrected for this discrepancy to some extent.

Table 37 compares the web-survey sample to Census statistics for Connecticut.

<sup>&</sup>lt;sup>38</sup> Department of Health's 60% Area Median Income (<u>S</u>AMI) thresholds for Connecticut. <u>https://www.energizect.com/your-home/solutions-list/save-energy-and-money-all-year-long</u>



## Table 37: Demographic Comparison to Population

| ×                            | -        |            |                            |
|------------------------------|----------|------------|----------------------------|
| Demographie                  | Sample   | Population |                            |
| Demographic                  | Weighted | Unweighted | (n=1,354,713) <sup>1</sup> |
| County                       |          |            |                            |
| Hartford                     | 25%      | 24%        | 26%                        |
| Fairfield                    | 23%      | 27%        | 25%                        |
| New Haven                    | 26%      | 26%        | 24%                        |
| New London                   | 7%       | 5%         | 8%                         |
| Litchfield                   | 5%       | 4%         | 5%                         |
| Middlesex                    | 6%       | 5%         | 5%                         |
| Tolland                      | 5%       | 5%         | 4%                         |
| Windham                      | 4%       | 3%         | 3%                         |
| Tenure                       |          |            |                            |
| Own                          | 72%      | 66%        | 66%                        |
| Rent                         | 28%      | 34%        | 34%                        |
| Household Size               |          |            |                            |
| 2 or fewer                   | 63%      | 68%        | 62%                        |
| 3                            | 16%      | 15%        | 16%                        |
| 4                            | 13%      | 11%        | 14%                        |
| 5 or more                    | 8%       | 7%         | 8%                         |
| 2017 Gross Household Income  |          |            |                            |
| Less than \$40,000           | 36%      | 23%        | 29%                        |
| \$40,000 to \$69,999         | 21%      | 22%        | 21%                        |
| \$70,000 to \$99,999         | 16%      | 20%        | 16%                        |
| \$100,000 to \$149,999       | 16%      | 21%        | 16%                        |
| \$150,000 to \$199,999       | 6%       | 7%         | 8%                         |
| \$200,000 or more            | 6%       | 7%         | 10%                        |
| 60% Area [GR78]Median Income |          |            |                            |
| Above                        | 54%      | 73%        | 66%                        |
| Below                        | 46%      | 27%        | 34%                        |

(Source: web-survey and U.S. Census)



| Domographia                       | Sample (  | Population |                            |
|-----------------------------------|-----------|------------|----------------------------|
| Demographic                       | Weighted  | Unweighted | (n=1,354,713) <sup>1</sup> |
| Highest Level of Education        |           |            |                            |
| High school/Less than HS          | 15%       | 12%        | 34%                        |
| Some college or associated degree | 27%       | 25%        | 26%                        |
| Bachelor's degree or higher       | 58%[GR79] | 63%        | 40%                        |

<sup>1</sup> Percentages exclude refusals so sample sizes differ by demographic.
 <sup>2</sup> Source: U.S. Census Bureau. ACS 2012-2016. Proportions are based on occupied housing units.

Figure 3 illustrates the distribution of the 2,426 web-survey and 227 on-site sample homes. The top two maps include single-family homes with one to four units, and the bottom two include multifamily homes with five or more units.



## **Figure 3: Sample Geography**



Table 38 through Table 40 compare web-survey responses <u>and demographics (?)</u> by dwelling type.

| (Source: web-survey) |                                       |            |                                  |            |                      |            |  |
|----------------------|---------------------------------------|------------|----------------------------------|------------|----------------------|------------|--|
| Age                  | Single-family, 1-4 units<br>(n=1,749) |            | Multifamily, 5+ units<br>(n=677) |            | Overall<br>(n=2,426) |            |  |
|                      | Weighted                              | Unweighted | Weighted                         | Unweighted | Weighted             | Unweighted |  |
| 5 years or younger   | 12%                                   | 10%        | 10%                              | 9%         | 11%                  | 10%        |  |
| 6-18 years old       | 23%                                   | 21%        | 14%                              | 10%        | 21%                  | 18%        |  |
| 19-34 years old      | 30%                                   | 28%        | 41%                              | 42%        | 32%                  | 32%        |  |
| 35-54 years old      | 40%                                   | 39%        | 37%                              | 34%        | 39%                  | 37%        |  |
| 55-64 years old      | 35%                                   | 35%        | 21%                              | 21%        | 32%                  | 31%        |  |
| 65-74 years old      | 27%                                   | 28%        | 16%                              | 17%        | 25%                  | 25%        |  |
| 75-84 years old      | 11%                                   | 10%        | 5%                               | 5%         | 10%                  | 9%         |  |
| 85 years and older   | 4%                                    | 3%         | 3%                               | 2%         | 4%                   | 3%         |  |

## Table 38: Household Occupant Age

<sup>1</sup> Percentages represent the proportion of homes with at least one occupant in the respective age range; as such, percentages do not sum to 100%.



| (Source, web-survey) |                                       |            |                                  |            |                      |            |
|----------------------|---------------------------------------|------------|----------------------------------|------------|----------------------|------------|
| Demographic          | Single-family, 1-4 units<br>(n=1,749) |            | Multifamily, 5+ units<br>(n=677) |            | Overall<br>(n=2,426) |            |
|                      | Weighted                              | Unweighted | Weighted                         | Unweighted | Weighted             | Unweighted |
| Tenure               |                                       |            |                                  |            |                      |            |
| Own                  | 83%                                   | 83%        | 21%                              | 25%        | 72%                  | 66%        |
| Rent                 | 17%                                   | 17%        | 79%                              | 75%        | 28%                  | 34%        |
| Residency            |                                       |            |                                  |            |                      |            |
| Primary              | 98%                                   | 98%        | 98%                              | 97%        | 98%                  | 98%        |
| Secondary            | 2%                                    | 2%         | 2%                               | 3%         | 2%                   | 2%         |
| Years in Home        |                                       |            |                                  |            |                      |            |
| Average <sup>1</sup> | 19.2                                  | 18.9       | 7.6                              | 7.3        | 17.2                 | 15.7       |
| Months Occupied      | ł                                     |            |                                  |            |                      |            |
| Average <sup>1</sup> | 11.7                                  | 11.7       | 11.5                             | 11.6       | 11.7                 | 11.7       |
| Day Time Occupa      | ancy <sup>2</sup>                     |            |                                  |            |                      |            |
| 9am to 12pm          | 79%                                   | 78%        | 67%                              | 61%        | 77%                  | 73%        |
| 12pm to 5pm          | 83%                                   | 82%        | 68%                              | 61%        | 80%                  | 75%        |
| 5pm to 10pm          | 99%                                   | 99%        | 97%                              | 98%        | 98%                  | 99%        |

#### Table 39: Home Occupancy (Source: web-survey)

<sup>1</sup> Sample sizes vary.
 <sup>2</sup> Nearly one-fourth (24%) of respondents refused to answer this question, likely out of concern for safety. So, sample sizes are lower than other questions.



| (Source: web-survey)               |                    |                            |                 |                         |            |                  |  |
|------------------------------------|--------------------|----------------------------|-----------------|-------------------------|------------|------------------|--|
| Demographic <sup>1</sup>           | Single-fam<br>(n=1 | nily, 1-4 units<br>I,749)² | Multifam<br>(n= | ily, 5+ units<br>=677)² | Ov<br>(n=: | verall<br>2,426) |  |
|                                    | Weighted           | Unweighted                 | Weighted        | Unweighted              | Weighted   | Unweighted       |  |
| Number of Occupants                |                    |                            |                 |                         |            |                  |  |
| 1                                  | 17%                | 17%                        | 43%             | 42%                     | 21%        | 24%              |  |
| 2                                  | 37%                | 37%                        | 28%             | 31%                     | 35%        | 36%              |  |
| 3                                  | 14%                | 13%                        | 15%             | 12%                     | 14%        | 13%              |  |
| 4                                  | 13%                | 12%                        | 6%              | 4%                      | 11%        | 9%               |  |
| 5 or more                          | 9%                 | 8%                         | 2%              | 2%                      | 8%         | 6%               |  |
| Refused                            | 12%                | 13%                        | 6%              | 9%                      | 11%        | 11%              |  |
| Average                            | 2.6                | 2.3                        | 1.9             | 1.7                     | 2.5        | 2.1              |  |
| 2017 Gross Household               | Income             |                            |                 |                         |            |                  |  |
| Less than \$40,000                 | 21%                | 13%                        | 52%             | 24%                     | 26%        | 16%              |  |
| \$40,000 to \$69,999               | 15%                | 14%                        | 14%             | 17%                     | 15%        | 15%              |  |
| \$70,000 to \$99,999               | 12%                | 14%                        | 8%              | 13%                     | 11%        | 14%              |  |
| \$100,000 to \$149,999             | 13%                | 15%                        | 7%              | 13%                     | 12%        | 14%              |  |
| \$150,000 to \$199,999             | 5%                 | 5%                         | 2%              | 4%                      | 4%         | 5%               |  |
| \$200,000 or more                  | 5%                 | 5%                         | 2%              | 4%                      | 4%         | 5%               |  |
| Refused                            | 30%                | 35%                        | 15%             | 25%                     | 27%        | 32%              |  |
| 60% Area Median Incoi              | ne <sup>3</sup>    |                            |                 |                         |            |                  |  |
| Above                              | 41%                | 48%                        | 29%             | 51%                     | 39%        | 49%              |  |
| Below                              | 29%                | 17%                        | 56%             | 23%                     | 33%        | 19%              |  |
| Refused                            | 30%                | 35%                        | 15%             | 26%                     | 28%        | 32%              |  |
| Highest Level of Educa             | ation              |                            |                 |                         |            |                  |  |
| High school or less                | 14%                | 12%                        | 14%             | 9%                      | 14%        | 11%              |  |
| Some college or associate's degree | 25%                | 25%                        | 28%             | 20%                     | 26%        | 23%              |  |
| Bachelor's degree or<br>higher     | 55%                | 57%                        | 53%             | 65%                     | 53%        | 59%              |  |
| Refused                            | 6%                 | 6%                         | 5%              | 5%                      | 6%         | 6%               |  |

## **Table 40: Socioeconomic Indicators**

<sup>1</sup> Note that percentages differ slightly from Table 37 due to the inclusion of refusals.
 <sup>2</sup> Some percentages do not sum to 100% due to rounding.
 <sup>3</sup> Source: Income Guidelines (60% Annual Median Income for FFY 2017)

https://www.energizect.com/your-home/solutions-list/save-energy-and-money-all-year-long



## Appendix A Methodology Details

This appendix details fielding, and sampling approaches and the end uses and attributes that web surveys and on-site verification visits examined.

## A.1 FIELDING AND SAMPLING

The sampling approach oversampled multifamily respondents for two reasons:

- 1. To ensure adequate representation of multifamily households.
- 2. To provide sufficient completes from which to recruit multifamily households for the *R1705/R1609 Multifamily Baseline and Weatherization Opportunity* study (conducted by ERS).

To develop the RASS sample, the evaluation team requested a random pull of electric customers from the Companies. The request asked for 28,300 (71%) residential electric customer contacts from Eversource and 11,700 (29%) residential electric customer contacts from UI, requiring that all customer contacts have billing data dating from January 2016 through "the most recent month" in 2017. While fielding the web survey, the evaluation team submitted a subsequent data request in February 2017 for an additional 20,000 residential multifamily homes, specifically 14,000 likely-multifamily electric customers from Eversource and 6,000 likely-multifamily electric customers from UI.

After removing non-residential customers, gas accounts, and duplicated service addresses, the sample included 51,164 residential electric customers. As the Companies do not explicitly track dwelling type or income, it was difficult to accurately assess the demographic representativeness of the sample frame or accurately pull a sample that overrepresented multifamily homes. To target multifamily homes, the evaluation team used variables such as service address details and the presence of unit numbers to flag homes that were *likely-multifamily* buildings with five or more units. In addition, the evaluation team used rate codes and participation data regarding low-income programs to flag *likely-low-income* customers.<sup>39</sup>

Using a staged-fielding approach and leveraging the artificial *likely-multifamily* and *likely-low-income* flags helped ensure that survey responses somewhat mirrored the distribution of Census data in terms of dwelling type and income. As shown in Table 41, *likely-multifamily* homes were oversampled, and the evaluation team targeted a rough Eversource/UI split of 70/30[GR80]. For details on comparing survey responses to Census distributions by dwelling type, see Table 34; see\_and\_Table 37 for a comparison by county and income levels.

<sup>&</sup>lt;sup>39</sup> Partial program participation data was provided with the Companies sample information. Programs provided with the sample included Home Energy Solutions (HES) and HES- Income Eligible programs.



|                        |                                   |                        | <b>J J J</b> |                         |                         |  |
|------------------------|-----------------------------------|------------------------|--------------|-------------------------|-------------------------|--|
| Home Type <sup>1</sup> | Customer Sample Pull <sup>2</sup> |                        | Web-Survey S | Web-Survey Sample Frame |                         |  |
|                        | Eversource <sup>4</sup>           | United<br>Illuminating | Eversource   | United<br>Illuminating  | Population <sup>3</sup> |  |
| n                      | 26,893                            | 24,271                 | 20,100       | 10,200                  | 1,354,713               |  |
| Single-family          | 58%                               | 63%                    | 44%          | 35%                     | 83%                     |  |
| Likely-Multifamily     | 43%                               | 37%                    | 56%          | 65%                     | 17%                     |  |

## Table 41: Sampling by Dwelling Type

<sup>1</sup> Single-family homes include mobile homes and housing complexes with 1-4 units, multifamily homes include housing complexes with 5 or more units. Percentages for customer sample pull and sample frame are based on initial sample flags, not survey responses.

<sup>2</sup> Source: Random electric customer sample provided by Companies.

<sup>3</sup> Source: ACS Census 5-Year Estimates: 2012-2016. Proportions are based on occupied housing units.

<sup>4</sup> Percentages do not sum to 100% due to rounding.

Between December 15, 2017 and April 20, 2018, 30,300 electric residential customers in the Companies' territory received letters inviting them to respond to the web survey in exchange for a \$10 Amazon electronic-gift card. Depending on their characteristics, some customers who did not initially respond received follow-up emails and letters reminding them to respond.<sup>40</sup> The study achieved a response rate of 8%, with 2,426 customers completing the survey. The following steps outline the three-wave approach used to achieve this response rate and adequate multifamily representation:

- Wave 1: Sent invitation letters on December 15, 2017 to 10,000 Eversource customers, as UI had not yet provided customer contacts. Wave 1 non-respondents received a reminder email (where email addresses were available) approximately one week after receiving the letter.
  - Result: Multifamily and low-income homes were underrepresented in comparison to Census statistics. Therefore, homes flagged as *likely-multifamily* in the sample frame received a follow-up email.
- Wave 2: Sent 10,000 invitation letters on January 26, 2018 to 7,000 UI customers and 3,000 Eversource customers. Wave 2 sample frame attempted to further over-represent multifamily homes and exhausted the remaining *likely-multifamily* sample frame for both Companies. Wave 2 non-respondents received a reminder email approximately one week after receiving the letter. The reminder email explicitly stated that the survey was targeting multifamily customers.
  - Result: While response rates from multifamily and low-income households improved slightly, multifamily homes were still underrepresented. At this point, the survey was altered to allow single-family customers to respond to the survey but no longer offered them a \$10 Amazon gift card in exchange. Further, the study sent 7,000 reminder letters on February 20, 2018 to 7,000 (53% Eversource, 47% UI) Wave 1 and 2 *likely-multifamily* flagged homes.

<sup>&</sup>lt;sup>40</sup> To further target multifamily homes, email reminders to the second and third waves (or cohorts) were only sent to homes flagged as *likely-multifamily*.



• Wave 3: Sent invitation letters on April 6, 2018 to a new list of 10,300 (69% Eversource, 31% UI) *likely-multifamily* customers. Wave 3 non-respondents received a reminder email approximately one week after receiving the letter.

Some customers asked to respond to the survey via paper or telephone and were directed to visit a local library for internet access.<sup>41</sup> This may have contributed to slightly lower survey-sample representation among low-income customers (27% unweighted survey responses compared to 34% in Census data).<sup>42</sup> [GR81] The survey did not ask *respondent* age, so it is unclear if the web-only mode impacted response rates among older customers. Research from mixed-mode surveys conducted via web and telephone in Massachusetts in 2015 showed that web and phone respondents differed primarily for three parameters: age, home ownership status, and income,<sup>43</sup> with web respondents being significantly more likely than phone respondents to be younger than 45 years old, homeowners, and non-low-income.

Table 42 compares the Companies' residential electric customer sample pull and the web-survey sample frame.

| County      |               | Custon     | ner Sample Pull     | Web-Survey Sample Frame |                     |  |
|-------------|---------------|------------|---------------------|-------------------------|---------------------|--|
| County      | поше туре     | Eversource | United Illuminating | Eversource              | United Illuminating |  |
| n           |               | 26,893     | 24,271              | 20,100                  | 10,200              |  |
| Hartford    | Single-family | 19%        | -                   | 14%                     | -                   |  |
|             | Multifamily   | 15%        | -                   | 19%                     | -                   |  |
| Fairfield   | Single-family | 11%        | 18%                 | 8%                      | 10%                 |  |
| Famelo      | Multifamily   | 14%        | 15%                 | 19%                     | 26%                 |  |
| New Heyen   | Single-family | 8%         | 46%                 | 6%                      | 26%                 |  |
| New Haven   | Multifamily   | 5%         | 22%                 | 6%                      | 38%                 |  |
| NewLondon   | Single-family | 5%         | -                   | 4%                      | -                   |  |
| New London  | Multifamily   | 2%         | -                   | 2%                      | -                   |  |
| Lite b Cold | Single-family | 5%         | -                   | 4%                      | -                   |  |
| Litchfield  | Multifamily   | 1%         | -                   | 2%                      | -                   |  |
| Middlesov   | Single-family | 4%         | -                   | 3%                      | -                   |  |
| WIGGIesex   | Multifamily   | 2%         | -                   | 2%                      | -                   |  |
| Tolland     | Single-family | 3%         | -                   | 2%                      | -                   |  |

## Table 42: Sampling by County and Dwelling Type

<sup>&</sup>lt;sup>43</sup> <u>http://ma-eeac.org/wordpress/wp-content/uploads/MA-2015-16-Lighting-Market-Assessment-Final-Report-08August2016.pdf</u>



<sup>&</sup>lt;sup>41</sup> The evaluation team conducted one survey over the phone with a visually-impaired respondent.

<sup>&</sup>lt;sup>42</sup> Respondents who refused to answer income questions were binned into the non-low-income group which also contributes to the underrepresentation of low-income customers.

#### R1706 RASS AND R1616/R1708 LIGHTING REPORT

| County  | Home Tree 1   | Custon     | ner Sample Pull     | Web-Survey Sample Frame |                     |  |
|---------|---------------|------------|---------------------|-------------------------|---------------------|--|
|         | потте туре    | Eversource | United Illuminating | Eversource              | United Illuminating |  |
|         | Multifamily   | 3%         | -                   | 3%                      | -                   |  |
| Windham | Single-family | 3%         | -                   | 2%                      | -                   |  |
|         | Multifamily   | 1%         | -                   | 2%                      | -                   |  |

<sup>1</sup> Single-family homes include mobile homes and housing complexes with 1-4 units, multifamily homes include housing complexes with 5 or more units.

In support of the lighting portion of the study, 81 customers who participated in the previous *R154* study were added to the sample (not reported in table above). These respondents received a special invitation letter and follow-up telephone calls.

Comparing outreach timing with web-survey response rates shows that response rates were highest approximately two to four days after the initial mailing. Customer visits to a temporary informational webpage appear to correlate with response rates (0.85 positive correlation). Figure 4 charts response rates and webpage visits over time with respect to the mailing waves.



#### Figure 4: Web-Survey Response Rates and Webpage Visits



## A.2 END-USE AND ATTRIBUTE LIST

Table 43 through Table 48 identify the end uses and other characteristics asked about in the web survey and/or on-site verification visits. The study examined fuel types, presence, counts, ages, efficiency levels, and elements indicative of energy consumption. The level and mode of research varied by measure. Numbers in the table columns indicate the modes used: 1 means it was asked about only in the web-survey, 2 means it was examined only on site, and 3 means the evaluation team collected it through both modes.

This report does not analyze all characteristics. However, the database houses all data listed below.

As shown in Table 43, after asking on the web survey about quantities, ages, configurations, and habits associated with appliances, the evaluation team verified that information on site. Technicians also recorded other characteristics indicative of energy consumption by logging things like make, model, and ENERGY STAR-labeling.

| End-Use        | Fuel Type | Presence | Count | Age | ENERGY<br>STAR | Details                                                               |
|----------------|-----------|----------|-------|-----|----------------|-----------------------------------------------------------------------|
| Clothes washer | 2         | 3        | 3     | 3   | 2              | Loads per week and<br>temperatures <sup>1</sup><br>IMEF <sup>2</sup>  |
| Clothes dryer  | 3         | 3        | 3     | 3   | 2              | Location <sup>2</sup><br>Moisture sensing <sup>2</sup>                |
| Dishwasher     | -         | 3        | 3     | 3   | 2              | Loads per week <sup>1</sup>                                           |
| Microwave      | -         | 1        | -     | -   | -              | Number of times used per day <sup>1</sup>                             |
| Refrigerator   | -         | 3        | 3     | 3   | 2              | Type <sup>3</sup><br>Refrigerator volume and                          |
| Freezer        | -         | 3        | 3     | 3   | 2              | consumption <sup>2</sup><br>Location <sup>3</sup><br>Use <sup>1</sup> |
| Oven/Range     | 3         | 3        | 3     | -   | -              | -                                                                     |
| Dehumidifier   | -         | 3        | 3     | 3   | 2              | Auto-setting <sup>1</sup>                                             |
| Humidifier     | -         | 1        | 1     | 1   | -              | -                                                                     |

#### Table 43: Appliances – Details Collected by Data Collection Modes

1=web only, 2=on site only, 3=both web and on site



To support the upstream lighting NTG portion of this study[GR82], the on-site verification visits researched details of lighting fixtures, including type and if it is controlled by a sensor, as well as make/model and wattages of installed and stored bulbs in the home (Table 44).

| End-Use          | Fuel Type | Presence | Count | Age | ENERGY<br>STAR <sup>1</sup> |
|------------------|-----------|----------|-------|-----|-----------------------------|
| CFL - Standard   | -         | 2        | 2     | -   | -                           |
| Specialty CFL    | -         | 2        | 2     | -   | -                           |
| LEDs             | -         | 2        | 2     | -   | 2                           |
| LED Recessed Can | -         | 2        | 2     | -   | 2                           |
| LED Fixture      | -         | 2        | 2     | -   | -                           |
| Specialty LED    | -         | 2        | 2     | -   | 2                           |
| Fluorescent      | -         | 2        | 2     | -   | -                           |
| Halogen          | -         | 2        | 2     | -   | -                           |
| Other bulb type  | -         | 2        | 2     | -   | -                           |

## Table 44: Lighting – Details Collected by Data Collection Modes

1=web only, 2=on site only, 3=both web and on site

<sup>1</sup> ENERGY STAR status was based on model information collected on site.

Consumer electronics research captured presence, count, and if equipment was plugged into an APS (Table 45). Web surveys asked respondents to enumerate their consumer electronics and about APS usage, all of which was verified during on-site verification visits. While on site, the presence of APS was verified, and all equipment attached to the APS were recorded. Technicians logged peripheral electronics (e.g. printers) surrounding or connected to televisions and computers.


| End-Use                     | Fuel<br>Type | Presence | Count | Age | ENERGY<br>STAR | Details                         |
|-----------------------------|--------------|----------|-------|-----|----------------|---------------------------------|
| Desktop computers           | -            | 3        | 3     | -   | -              | Use <sup>1</sup>                |
| Laptops                     | -            | 3        | 3     | -   | -              | Use <sup>1</sup>                |
| Computer monitors           | -            | 3        | 3     | -   | -              | Use <sup>1</sup>                |
| Advanced power strips (APS) | -            | 3        | 3     | -   | -              | Plugged-in devices <sup>3</sup> |
| TVs                         | -            | 3        | 3     | -   | -              | -                               |
| Game consoles               | -            | 3        | 3     | -   | -              | -                               |
| Sound systems               | -            | 3        | 3     | -   | -              | -                               |
| Cell phones                 | -            | 1        | 1     | -   | -              | -                               |
| Modem/Router                | -            | 3        | 2     | -   | -              | -                               |
| Printer                     | -            | 3        | 2     | -   | -              | -                               |
| Standalone sound equipment  | -            | 3        | 2     | -   | -              | -                               |
| Tablets                     | -            | 3        | 3     | -   | -              | -                               |
|                             |              |          |       |     |                |                                 |

#### Table 45: Consumer Electronics – Details Collected by Data Collection Modes

Wi-Fi connected devices - 1 1 - - Controlled devices<sup>1</sup> 1=web only, 2=on site only (if attached to a television or computer), 3=both web and on site (if attached to a television or computer)

As shown in Table 46, on-site verification visits again offered the opportunity to hone-in on energy consumption factors. On site, the evaluation team collected make and model of heating, cooling, and water heating equipment; output capacity of heating and cooling units; and gallons and/or EF of water heating equipment. Although hard to find, on-site technicians looked for the presence of boiler circulator pumps. [GR83] Photos were taken of furnace unit nameplates, which were later used to determine the presence of ECM furnace fans.



| End-Use                          | Fuel<br>Type | Presence | Count | Age | ENERGY<br>STAR | Details                                                                                        |
|----------------------------------|--------------|----------|-------|-----|----------------|------------------------------------------------------------------------------------------------|
| Heating system                   | 3            | 3        | 3     | 3   | 2              | Use <sup>1</sup><br>AFUE/COP <sup>2</sup>                                                      |
| Cooling system                   | 3            | 3        | 3     | 3   | 2              | Use <sup>1</sup><br>SEER/EER/COP <sup>2</sup>                                                  |
| Thermostats                      | -            | 3        | 3     | -   | -              | Type <sup>3</sup><br>Settings <sup>1</sup>                                                     |
| Ducts                            | -            | 3        | 3     | -   | -              | Insulation type <sup>2</sup><br>R-value <sup>2</sup>                                           |
| Radiators                        | -            | 1        | 1     | -   | -              | -                                                                                              |
| Radiant floor heating (bathroom) | -            | 1        | -     | -   | -              | -                                                                                              |
| Whole-house fan                  | -            | 2        | 2     | -   | -              | -                                                                                              |
| HRV/ERV                          | -            | 2        | 2     | 2   | 2              | -                                                                                              |
| Water heater                     | 3            | 3        | 3     | 3   | 2              | Conditioned space <sup>3</sup><br>Condensing water<br>heater <sup>1</sup><br>AHRI <sup>2</sup> |
| Water heater<br>blanket          | -            | 2        | 2     | -   | -              | R-value <sup>2</sup>                                                                           |
| Circulator pump                  | -            | 2        | 2     | -   | -              | -                                                                                              |
| ECM furnace fan                  | -            | 2        | 2     | -   | -              | -                                                                                              |

# Table 46: Heating, Cooling, Thermostats, Water Heating – Details Collected by Data Collection Modes

1=web only, 2=on site only, 3=both web and on site

As shown in Table 47, while the web survey asked respondents about a number of miscellaneous end-uses, on-site verification visits researched a few key types of equipment including, photovoltaics (PV), energy storage batteries, and the presence of electric vehicles.



| End-Use                  | Fuel<br>Type | Presence | Count | Age | ENERGY<br>STAR | Details                                                                                  |
|--------------------------|--------------|----------|-------|-----|----------------|------------------------------------------------------------------------------------------|
| Electric vehicles        | -            | 3        | 3     | -   | -              | Charging station presence<br>and power level <sup>1</sup><br>Make and model <sup>1</sup> |
| Photovoltaics            | -            | 3        | -     | -   | -              | Capacity (kw) <sup>3</sup>                                                               |
| Energy-storage batteries | -            | 3        | -     | -   | -              | -                                                                                        |
| Pool                     | -            | 1        | -     | -   | -              | -                                                                                        |
| Whole-home generator     | 1            | 1        | -     | -   | -              | -                                                                                        |
| Air purifier             | -            | 1        | -     | -   | -              | -                                                                                        |
| Heated waterbed          | -            | 1        | -     | -   | -              | -                                                                                        |
| Aquarium                 | -            | 1        | -     | -   | -              | -                                                                                        |
| Sump pump                | -            | 1        | -     | -   | -              | -                                                                                        |
| Well pump                | -            | 1        | -     | -   | -              | -                                                                                        |
| Spa                      | -            | 1        | -     | -   | -              | -                                                                                        |
| Pool/spa heaters         | 1            | 1        | -     | -   | -              | -                                                                                        |

#### Table 47: Miscellaneous End-Uses – Details Collected by Data Collection Modes

1=web only, 2=on site only, 3=both web and on site

Table 48 lists the building characteristics studied. Note, web surveys asked respondents to quantify rooms in their homes by type and estimate the square footage of their homes. However, on-site verification visits limited that investigation to home type, number of stories, age of home, and number of bedrooms. To support the *R1705/R1609 Multifamily Baseline and Weatherization Opportunity* study weatherization data was more comprehensively collected for multifamily sites. Those results will be available in the R1705/R1609 report. Web surveys also asked about home occupancy, education, and income. On-site verification visits did not address demographics.



| Characteristic        | Data Collection Mode(s) | Details                                                                                                          |
|-----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------|
| Home type             | 3                       | Type (primary/secondary) <sup>1</sup><br>Years as primary residence <sup>1</sup>                                 |
| Stories               | 3                       | -                                                                                                                |
| Age of home           | 3                       | -                                                                                                                |
| Conditioned area      | 1                       | -                                                                                                                |
| Last major renovation | 1                       | -                                                                                                                |
| Rooms                 | 1                       | Count of bedrooms <sup>3</sup>                                                                                   |
| Windows               | 3                       | <u>Low-</u> E-coating and <del>argongas</del><br><u>fill</u><br>Pane <sup>2</sup><br>Frame material <sup>3</sup> |
| Insulation            | 2                       | Nominal R-Value <sup>2</sup>                                                                                     |

#### Table 48: Building Characteristics – Details Collected by Data Collection Modes

1=web only, 2=on site only, 3=both web and on site





## **Appendix B Analysis Details**

#### **B.1** WEIGHTING

To develop weights for the analysis, the evaluation team compared the web-survey sample with Census data representing the Connecticut customer population across the following five demographic variables and nine different proportional weighting schemes.

**Dwelling type.** Due to unintentional under-sampling of single-family detached homes and over-sampling of large multifamily complexes (50 or more units), weighting used five categories of home type: single-family attached, single-family detached, single-family 2-4 units, multifamily 5-49 units, and multifamily with 50 or more units.

**Income.** Respondents' income category was associated with the Department of Health's 60% Area Median Income (AMI) thresholds for the state.<sup>44</sup> The weighting schemes binned respondents who refused to answer income questions into the *non-low-income* group, which likely contributes to the underrepresentation of low-income customers.<sup>45</sup>

**Education.** Weighting classified respondents into two education groups: bachelor's degree or less than bachelor's degree and categorized respondents who refused to share their education level as *less than Bachelor's degree*.

Tenure. Owner or renter status was based on web-survey responses.

**Program Participation.** Based on comprehensive Company program participation data provided after the web-survey was completed.<sup>46</sup>

The chosen weighting scheme accounted for dwelling type, income, and program participation and was selected because (1) the weight provided the best fit on demographic variables and (2) weights were not extreme and did not produce volatile results. As shown in Table 49, this resulted in 20 proportional weights. The analysis applied the proportional weights to web-survey-based data analysis, including in the development of adjustment factors (described below). Analysis of on-site data used proportional weights scaled to the on-site sample.

<sup>&</sup>lt;sup>46</sup> UI could not provide raw customer data for their population, so they provided an estimated participation rate for their population of electric customers.



<sup>44</sup> https://www.energizect.com/your-home/solutions-list/save-energy-and-money-all-year-long

<sup>&</sup>lt;sup>45</sup> The Companies' databases do not capture all low-income homes because not all homes enroll in income-eligible rate programs. Therefore, weights relied on the Census Bureau's American Community Survey income characterization of Connecticut.

| Dwelling Type              | Program<br>Participation | Income         | CT Customer<br>Population <sup>1</sup> | Sample | Proportion<br>Weight |
|----------------------------|--------------------------|----------------|----------------------------------------|--------|----------------------|
| Single-family,<br>attached | Deuticia cust            | Low-Income     | 1,828                                  | 8      | 0.417                |
|                            | Participant              | Non-low-income | 3,399                                  | 20     | 0.310                |
|                            | Non nonticipant          | Low-Income     | 24,284                                 | 27     | 1.642                |
|                            | Non-participant          | Non-low-income | 45,164                                 | 155    | 0.532                |
|                            | Destisionent             | Low-Income     | 11,846                                 | 25     | 0.865                |
| Single-family,             | Participant              | Non-low-income | 45,070                                 | 129    | 0.638                |
| detached                   | N                        | Low-Income     | 157,384                                | 87     | 3.303                |
|                            | Non-participant          | Non-low-income | 598,787                                | 889    | 1.230                |
|                            |                          | Low-Income     | 8,346                                  | 26     | 0.586                |
| Single-family, 2-          | Participant              | Non-low-income | 6,638                                  | 27     | 0.449                |
| 4 units                    | Non-participant          | Low-Income     | 110,877                                | 119    | 1.701                |
|                            |                          | Non-low-income | 88,195                                 | 237    | 0.679                |
|                            | Destisionent             | Low-Income     | 6,218                                  | 16     | 0.709                |
| Multifamily,               | Participant              | Non-low-income | 5,114                                  | 19     | 0.491                |
| 5-49 units                 | N                        | Low-Income     | 82,606                                 | 93     | 1.622                |
|                            | Non-participant          | Non-low-income | 67,946                                 | 281    | 0.441                |
|                            | Destisionent             | Low-Income     | 2,590                                  | 5      | 0.946                |
| Multifamily,               | Participant              | Non-low-income | 1,966                                  | 9      | 0.399                |
| 50+ units                  | Nen neuti-int            | Low-Income     | 34,408                                 | 44     | 1.428                |
|                            | Non-participant          | Non-low-income | 26,125                                 | 210    | 0.227                |

#### Table 49: Web-Survey Weighting Scheme

<sup>1</sup> Census data was split into participant and non-participant categories based on a 7% participation rate for the CT population. The overall participation rate among both service territories was a weighted of the 70/30 Eversource/UI split.



#### **B.3** ADJUSTMENT FACTORS

Adjustment factors leveraged three statistics: (1) self-reported values from the full web-survey sample, (2) self-reported values among on-site sample respondents, and (3) verified values from the on-site visits. The adjustment factors are the ratio between self-reported values from the on-site sample and verified values from the on-site sample. These ratios are applied to the full web-survey sample values only when the self-reported results differed statistically significantly from the web-survey results at the 90% confidence level.

Table 50 provides an example of the calculation method for the adjustment factor for oil boilers in single-family homes and the influence it had on overall penetration. In this example, 25% of *all* single-family web-survey respondents reported having an oil boiler and – when responding to the web survey – 16.5% of 90 on-site single-family respondents reported having them. On-site visits revealed that 25.2% of single-family on-site homes *actually* had oil boilers, yielding an adjustment factor of 1.53 (25.2% divided by 16.5%). Applying that adjustment factor to the full single-family web-survey sample revises the penetration rate from 25% to 38% (25% times 1.53). Calculations for average number of units per household used the same formula.<sup>47</sup>

|                 | · · · · · · · · · · · · · · · · · · · |                          |                     |            |                                     |  |  |
|-----------------|---------------------------------------|--------------------------|---------------------|------------|-------------------------------------|--|--|
|                 |                                       | Penetration <sup>1</sup> |                     |            |                                     |  |  |
| Measure         | Full Web                              | On-Site Sam              | ple (n=90)          | Adjustment | Revised<br>Penetration<br>(n=1,665) |  |  |
|                 | Sample<br>(n=1,665)                   | Web Reported             | On-Site<br>Verified | Factor     |                                     |  |  |
| Oil boiler - SF | 25%                                   | 16.5%                    | 25.2%               | 1.53       | 38%                                 |  |  |

#### Table 50: Adjustment Factor Calculation Approach – Example

<sup>1</sup> Percentages are weighted statistics.

Adjustment factors were calculated separately for single-family and multifamily homes, as well as for all homes. Many end uses did not require adjustment factors because the on-site verified results did not significantly differ from the web-survey results at the 90% confidence level. Adjustment factors were automatically 100% if fewer than five on-site homes reported having the end use (column Q in the *Adjustment Factor* tab). Table 51 shows the penetration adjustment factors. Empty cells indicate that there was not a statistically significant difference between survey responses and on-site results (or that there were too few to consider for adjustment). The *Adjustment Factor* tab in the database includes all statistics involved in these calculations. Footnotes throughout this report denote if adjustment factors were applied to the results.

<sup>&</sup>lt;sup>47</sup> A common misconception is that we use adjustment factors to change individual's responses. However, adjustment factors are only applied to results for summary statistics.



### Table 51: Adjustment Factors Applied

(Source: NMR comparison between web-survey and on-site visits)

| End Use                               | Single-family, 1-4<br>units<br>(n=1,724) | Multifamily, 5+<br>units<br>(n=653) | Overall<br>(n=2,377) |
|---------------------------------------|------------------------------------------|-------------------------------------|----------------------|
| Appliances                            |                                          |                                     |                      |
| Clothes washer                        |                                          | 0.70                                | 0.85                 |
| Clothes dryer                         |                                          | 0.68                                | 0.83                 |
| Clothes dryer - electric              |                                          | 0.74                                | 0.87                 |
| Clothes dryer - gas                   |                                          | 0.35                                | 0.67                 |
| Dishwasher                            | 0.87                                     | 0.87                                | 0.87                 |
| Stand-alone freezer (Chest & Upright) |                                          | 0.31                                | 0.60                 |
| Upright freezer                       |                                          | 0.40                                | 0.62                 |
| Chest freezer                         |                                          | 0.18                                | 0.55                 |
| Dehumidifier                          | 0.73                                     | 0.05                                | 0.58                 |
| Air Purifier                          |                                          | 0.40                                |                      |
| Stovetop                              |                                          | 1.02                                | 1.01                 |
| Primary Heating Fuel                  |                                          |                                     |                      |
| Natural gas                           |                                          | 1.57                                | 1.24                 |
| Electric                              |                                          | 0.58                                | 0.65                 |
| Heating System                        |                                          |                                     |                      |
| Natural gas furnace                   | 0.72                                     |                                     | 0.80                 |
| Propane furnace                       |                                          |                                     | 0.37                 |
| Oil furnace                           | 0.36                                     |                                     | 0.32                 |
| Oil boiler                            | 1.53                                     |                                     |                      |
| Electric furnace                      |                                          | 0.14                                | 0.15                 |
| Electric boiler                       |                                          | 0.00                                | 0.00                 |
| Central (ducted) air source heat pump | 0.12                                     | 0.62                                | 0.46                 |
| Electric baseboard                    | 0.62                                     |                                     | 0.74                 |
| Electric space heater                 | 3.66                                     | 0.47                                | 2.09                 |
| Electric wall heater                  |                                          | 0.00                                | 0.00                 |



#### R1706 RASS AND R1616/R1708 LIGHTING REPORT

| End Use              | Single-family, 1-4<br>units<br>(n=1,724) | Multifamily, 5+<br>units<br>(n=653) | Overall<br>(n=2,377) |
|----------------------|------------------------------------------|-------------------------------------|----------------------|
| Cooling System       |                                          |                                     |                      |
| None                 | 0.21                                     | 0.09                                | 0.19                 |
| Central Air          |                                          | 0.86                                |                      |
| MSHP/ASHP            |                                          | 0.16                                | 0.52                 |
| Thermostat           |                                          |                                     |                      |
| Standard             | 0.64                                     | 0.80                                | 0.71                 |
| Basic Programmable   | 0.65                                     | 0.56                                | 0.62                 |
| Wi-Fi smart          | 0.28                                     | 0.12                                | 0.28                 |
| Wi-Fi not smart      | 0.15                                     | 0.07                                | 0.11                 |
| All                  |                                          | 1.02                                |                      |
| Water Heater Fuel    |                                          |                                     |                      |
| Electric             | 0.70                                     | 0.73                                | 0.79                 |
| Natural gas          |                                          | 1.22                                |                      |
| Fuel oil             | 2.63                                     | 0.43                                | 1.69                 |
| Water Heater System  |                                          |                                     |                      |
| Natural gas standard |                                          | 0.59                                | 0.71                 |
| Natural gas tankless |                                          | 4.19                                | 2.08                 |
| Electric heat pump   |                                          | 0.00                                | 0.05                 |
| Electric tankless    |                                          |                                     | 0.00                 |
| Fuel oil standard    |                                          |                                     | 0.52                 |
| Electronics          |                                          |                                     |                      |
| APS                  | 0.06                                     | 0.06                                | 0.06                 |





### **Appendix C Data Processing**

This appendix details steps taken to clean, process, and merge data to prepare the Database's *Raw Data* tab which partners web-survey data, on-site data, and customer electric billing data. The methodology (<u>Section 2</u>) and Database User Guide (Appendix G) describe the analysis processes and protocols which leverage these data.

#### C.1 WEB-SURVEY DATA CLEANING

After fielding, the study modified web-survey variables into clean binary and categorical variables to facilitate database-user friendliness. Because adjustment factors corrected for erroneous estimates at the aggregate level, the study only revised responses for clarity, consistency, and overtly incorrect responses; examples include the following:

- In addition to being coded themselves, open-ended responses necessitated revising other responses. For example, a customer noted in an open-end response that they made a mistake when recording their heating and corrected their response. The team changed that response.
- Some outlier responses implied respondents misinterpreted questions. For example, if a respondent lived in a home with five units and reported they had five dishwashers, the team assumed they had one dishwasher per housing unit and revised the quantity from five to one.
- When asked about temperature setting behavior, some respondents likely responded in terms of Celsius instead of Fahrenheit; we converted those responses to Fahrenheit (e.g., 20°C to 68°F). However, some gave very unlikely responses such as 4°F, so we discarded those responses.
- If a respondent recorded a vehicle model that is not offered in electric or hybrid forms, we revised their responses to indicate that they did not have an electric or hybrid vehicle.
- When asked about cooling systems, people mentioned opening their windows as a form of cooling. We cleaned out those responses.

#### C.2 ON-SITE VERIFICATION DATA CLEANING

After completing the 227 on-site verification visits, the study thoroughly reviewed the data collected at each home and compared entries with on-site photographs to verify data were entered correctly and search for additional information online (e.g., model numbers implying age or efficiency levels). The on-site data were then merged with the web-survey data (at the customer level), aligning web-survey responses with on-site responses alongside each other or simply adding new variables.



#### C.3 BILLING DATA ATTACHMENT

After developing the web-survey sample frame, the evaluation team isolated and processed the billing records associated with the sampled accounts. The sample frame only had customers with a minimum of one to two months of billing data and excluded extremely large users that were found to be non-residential sites. The Companies also were able to provide billing data for all but three lighting panel participants (*R154*). The evaluation team took the following steps to process and clean the customer billing records:

- Checked for duplicate reads or billing records for the same timeframe and location.
- Removed master metered accounts, if detected.
- Disaggregated monthly usage to daily kWh based on the number of days between meter reads
- Aggregated daily usage into calendar monthly kWh<sup>48</sup>

After cleaning and merging the web-survey and on-site data, we appended the cleaned monthly billing data.

<sup>&</sup>lt;sup>48</sup> If the first or last month in the customer billing series contained less than 21 days, it was coded as missing and left out of the alignment of billing data to calendar months.





# Appendix D Lighting Saturation, Penetration, and Storage

This appendix details the lighting-related findings from the *R1616/R1708* (2018) on-site visits, and compares them with findings from previous research in Connecticut and other states, including separate estimates for the 2017 and 2018 Massachusetts and New York visits (Section 3.7.2 presents the averages of the 2017 and 2018 visits for those two comparison states). For purposes of brevity, the lighting discussions refer to the Companies' services territories as *Connecticut* (but the samples referenced represent the areas Connecticut served by Eversource and UI). As a reminder, the timing of visits varied by location. <u>Table 52Table 52</u> provides a list of comparable studies and their timing relative to Connecticut's effort.

| Area             | October – December<br>2017 | April – May 2018 | October – December<br>2018 |
|------------------|----------------------------|------------------|----------------------------|
| Connecticut      |                            | $\checkmark$     |                            |
| Rhode Island     |                            | $\checkmark$     |                            |
| Massachusetts    | $\checkmark$               |                  | $\checkmark$               |
| Upstate New York | $\checkmark$               |                  | $\checkmark$               |

Table 52: Lighting Saturation On-Site Visit Timing (Conducted by NMR)

#### **D.1 SATURATION**

Table 53 shows saturation for LEDs, CFLs, incandescent bulbs, and halogen bulbs in 2018 in Connecticut, Rhode Island, Massachusetts, and New York.<sup>49,50</sup> Overall, Connecticut LED saturation is slightly below the comparative program states of Rhode Island and Massachusetts, while inefficient bulb saturation is slightly higher. When compared to Upstate New York, which lacks upstream LED programs, Connecticut has higher LED saturation and lower inefficient bulb saturation, providing evidence that program activity in Connecticut and other states encourages LED saturation and discourages inefficient bulb saturation. In 2018, LED saturation in Connecticut (26%), Rhode Island (33%), and Massachusetts (34%) was pointedly higher compared to New York (22%) (see Figure 5Figure 5). Not surprisingly, in that same year, incandescent saturation

<sup>&</sup>lt;sup>50</sup> NMR. "RLPNC Study 17-9 2017-2018 Residential Lighting Market Assessment Study." March 28, 2018. Accessed at: <u>http://ma-eeac.org/wordpress/wp-content/uploads/RLPNC 179 LtgMarketAssessment 28March2018 FINAL-1.pdf</u>.



<sup>&</sup>lt;sup>49</sup> Massachusetts and New York data collection occurred in two phases: first at the end of 2017 (October through December) and then at the end of 2018 (October through December). Connecticut and Rhode Island data collection occurred roughly mid-way between (April and May 2018).

was lower in Connecticut (27%), Rhode Island (24%), and Massachusetts (24%) compared to the New York comparison area (37%).



Figure 5: Socket Saturation by Year and State

(Source: on-site visits)

Note: Massachusetts and New York data collection occurred in two phases: first at the end of 2017 (October through December) and then at the end of 2018 (October through December). Connecticut and Rhode Island data collection occurred roughly mid-way between (April and May 2018).

Table 53 compares socket saturation in Connecticut between 2012 and 2018. In 2018, more than one-quarter (26%) of sockets in Connecticut homes were filled with LEDs, whereas in 2012 only 2% of sockets held LEDs. In 2018, efficient bulbs – LEDs and CFLs combined – filled more than one-half (55%) of sockets, nearly double the percentage (28%) in 2012.<sup>51</sup> Conversely, inefficient bulbs – incandescents and halogens combined – filled only one-third (36%) of sockets in 2018, down from 58% in 2012.

<sup>&</sup>lt;sup>51</sup> NMR. "Connecticut Efficient Lighting Saturation and Market Assessment." October 2, 2012. Accessed at: <u>https://www.energizect.com/sites/default/files/FINAL%20EISA%20Lighting%20Saturation%20and%20Market%20Ass</u> <u>essment%20Report%20100212\_pdf.pdf</u>.



#### Table 53: Connecticut Socket Saturation by Year[GR84]

(Source: on-site visits)

| Bulb Type         | 2012  | 2018     |
|-------------------|-------|----------|
| Sample Size       | 100   | 227      |
| Number of sockets | 6,202 | 10,336   |
| LED               | 2%    | 26%      |
| Incandescent      | 49%   | 27%      |
| CFL               | 26%   | 29%      |
| Halogen           | 9%    | 9%       |
| Fluorescent       | 11%   | 6%[GR85] |
| Other/Unclear     | <1%   | <1%      |
| Empty Socket      | 2%    | 2%       |

Table 54 displays the mean, median, and range of saturation in 2018 by bulb type for Connecticut households. Interestingly, the only bulb types to reach 100% saturation were LEDs and CFLs, although halogens and incandescents did achieve at least 90% saturation in one or more homes.

### Table 54: Connecticut Socket Saturation in 2018

| Bulb Type     | Mean | Minimum | Median   | Maximum |
|---------------|------|---------|----------|---------|
| LED           | 26%  | 0%      | 20%      | 100%    |
| Incandescent  | 27%  | 0%      | 22%      | 90%     |
| CFL           | 29%  | 0%      | 23%      | 100%    |
| Halogen       | 9%   | 0%      | 4%       | 92%     |
| Fluorescent   | 6%   | 0%      | 1%[GR86] | 50%     |
| Other/Unclear | <1%  | 0%      | <1%      | <1%     |
| Empty Socket  | 2%   | 0%      | <1%      | <1%     |

(Source: on-site visits)



Table 55 shows specialty bulb saturation. Specialty bulbs include three-way bulbs of any kind; dimmable CFLs and fluorescents; circline fluorescents; non-A-line LEDs, incandescent, and halogen bulbs; and non-twist/spiral CFLs[GR87]. About one-third (30%) of sockets in Connecticut households in 2018 were filled with specialty bulbs. Specialty LEDs filled 7% of sockets.

# Table 55: Connecticut Specialty Bulb Socket Saturation in 2018 GR88 (Source: on-site visits) (Source: on-site visits)

| Specialty Bulb    | Mean     | Minimum | Median    | Maximum | Standard<br>Deviation |
|-------------------|----------|---------|-----------|---------|-----------------------|
| Number of Sockets | 10,336   | 10,336  | 10,336    | 10,336  | 10,336                |
| All Specialty     | 30%      | 0%      | 29%       | 91%     | 22%                   |
| Specialty LED     | 7%       | 0%      | 0%        | 83%     | 13%                   |
| Specialty CFL     | 6%[GR89] | 0%      | <1%[GR90] | 77%     | 12%                   |

Figure 6 provides the ENERGY STAR LED saturation for Connecticut and Rhode Island in 2018 and Massachusetts and New York in 2017 and 2018 (the values above each stack represent the overall LED saturation in each state, as discussed above with Figure 5).<sup>52</sup> Like Massachusetts and Rhode Island, Connecticut programs provide incentives only for ENERGY STAR-qualified LEDs (the New York comparison area does not have active upstream lighting programs). ENERGY STAR-qualified LED saturation was statistically significantly higher in Rhode Island (24%) and Massachusetts in 2018 (22%) than in Connecticut (12%). In fact, Connecticut ENERGY STAR-qualified LED saturation was nearly identical in mid-2018 to that of New York (10%) as measured in late 2018. [GR91]These results imply that the Connecticut program may not have had as much impact on LED saturation beyond what occurs in the absence of program support. [GR92]

<sup>&</sup>lt;sup>52</sup> While on site, technicians collected model numbers for all screw-base LED bulbs (not integrated LED fixtures). Comparing these model numbers with the list of ENERGY STAR-qualified LED bulbs determined the ENERGY STAR status for each LED bulb.





Figure 6: Recent ENERGY STAR LED Saturation by State

(Source: on-site visits)

Note: Massachusetts and New York data collection occurred in two phases: first at the end of 2017 (October through December) and then at the end of 2018 (October through December). Connecticut and Rhode Island data collection occurred roughly mid-way between (April and May 2018).

#### **D.2 PENETRATION**

As shown in Table 56, from 2012 to 2018 LED penetration in Connecticut increased by more than six times. In 2012, only 13% of homes had at least one LED, while in 2018, 83% did. In contrast, CFL penetration – while still higher – decreased somewhat (94% to 88%).

#### **Table 56: Connecticut Efficient Bulb Penetration by Year**

|             | (Source: on-site visits | 6)   |
|-------------|-------------------------|------|
| Bulb Type   | 2012                    | 2018 |
| Sample Size | 100                     | 227  |
| LED         | 13%                     | 83%  |
| CFL         | 94%                     | 88%  |



#### D.4 STORAGE BEHAVIOR

In Connecticut in 2018, 139 out of 227 households (61%) had at least one bulb in storage, averaging 10.2 stored bulbs per home – enough to fill more than one-fifth (22%) of the sockets in an average home. As shown in Table 57, nearly one-half (46%) of stored bulbs were incandescent, while LEDs made up just one-fifth (20%) of stored bulbs. Storage patterns were relatively similar across states.

| (Source: on-site visits)         |             |                 |               |          |  |  |  |
|----------------------------------|-------------|-----------------|---------------|----------|--|--|--|
| Bulb Type                        | Connecticut | Rhode<br>Island | Massachusetts | New York |  |  |  |
| Sample Size                      | 227         | 75              | 381           | 217      |  |  |  |
| Number of stored bulbs           | 2,315       | 690             | 5,524         | 2,626    |  |  |  |
| Incandescent                     | 46%         | 51%             | 51%           | 58%      |  |  |  |
| LEDs                             | 20%         | 25%             | 22%           | 19%      |  |  |  |
| CFLs                             | 20%         | 17%             | 9%            | 8%       |  |  |  |
| Halogen                          | 11%         | 7%              | 2%            | 3%       |  |  |  |
| Fluorescent                      | 3%          | 1%              | 16%           | 12%      |  |  |  |
| Other <sup>1</sup>               | 0%          | 0%              | <1%           | 0%       |  |  |  |
| Average stored bulbs<br>per home | 10.2        | 9.2             | 14.5          | 12.1     |  |  |  |

#### Table 57: Stored Bulbs in 2018 by State

<sup>1</sup> Other includes xenon, high pressure sodium bulbs, and mercury vapor bulbs.

#### Table 58: Connecticut Stored Bulbs in 2018 by Bulb Type

(Source: on-site visits)

| Specialty Bulb | Mean | Minimum | Median | Maximum | Standard<br>Deviation |
|----------------|------|---------|--------|---------|-----------------------|
| Sample Size    | 227  | 227     | 227    | 227     | 227                   |
| Incandescent   | 4.7  | 0       | 0      | 88      | 9.5                   |
| LED            | 2.1  | 0       | 0      | 49      | 4.9                   |
| CFL            | 2.0  | 0       | 0      | 23      | 4.0                   |
| Halogen        | 1.1  | 0       | 0      | 15      | 2.0                   |
| Fluorescent    | 0.3  | 0       | 0      | 20      | 2.0                   |





## Appendix E Upstream Lighting Net-to-Gross

This section summarizes current lighting saturation and the changes in saturation since the last on-site lighting inventory in 2012, compares historical and prospective NTG values for the residential lighting program, and provides a detailed comparison to Massachusetts and New York. This analysis is meant to help provide context for other, more robust, NTG estimates produced for Connecticut as part of CT R1615 analysis <u>and</u> is not mean to supplant existing <u>and planned</u> NTG values.<sup>53</sup> [GR93]

#### E.1 HISTORICAL LED SATURATION AND PROGRAM SUPPORT

The Connecticut EEB collected an on-site lighting inventory for Connecticut as part of the 2012 Northeast Residential Lighting Hours-of-Use Study. Conducted in November 2012, it included 90 single-family households in Connecticut. Conducted in April and May of 2018, the *R1616/R1708* study included on-site visits with 227 single-family and multifamily homes.

As presented in Appendix D.1, LED saturation increased exponentially between 2012 and 2018. In 2012, LEDs were present in 2% of all sockets and less than 1% of stored bulbs were LEDs. In 2018, LEDs were present in 26% of sockets (an average increase of 10.6 LEDs per home). In addition, in 2018 an average of 2.1 LEDs were found in storage.

The increase in LED saturation corresponds with increasing levels of support for LEDs offered by the Companies[GR94]. Between 2013 and 2018, Eversource and UI supported LEDs through their upstream and direct install programs (Table 59). Table 60 presents a year-by-year breakdown of saturation and program-supported LEDs: between 2013 and July 2018 Eversource and UI supported a total of 16.2 million LEDs through two primary channels (upstream and direct install), with about 14.9 million of them supported through the upstream program.

Over the past five and one-half years, the Companies have supported an average of 11 LEDs per household in Connecticut through their upstream program.<sup>54</sup> Including the direct-install channels [GR95] brings the average number of LEDs supported up to 12 per home[GR96].

<sup>&</sup>lt;sup>54</sup> This number of bulbs supported per household is calculated using the 2017 based on the Census population of 1,301,670 households in Connecticut.



<sup>&</sup>lt;sup>53</sup> NMR Group Inc., DNV GL, and Cadmus, *R1615 Light Emitting Diode (LED) Net-to- Gross Evaluation*. Submitted on August 7, 2017. Available at <u>https://www.energizect.com/sites/default/files/R1615\_CT%20LED%20Net-To-Gross%20Evaluation%20Report\_Final\_8.5.17.pdf</u>.

| Brogrom Voor        | Everso        | ource          | United Illuminating |                |  |
|---------------------|---------------|----------------|---------------------|----------------|--|
| Flogram rear        | Upstream LEDs | Direct Install | Upstream LEDs       | Direct Install |  |
| 2013                | 335,816       | 11,017         | 85,768              | 1,884          |  |
| 2014                | 1,150,538     | 116,091        | 345,558             | 21,686         |  |
| 2015                | 1,622,512     | 211,017        | 480,499             | 15,128         |  |
| 2016                | 2,316,469     | 283,072        | 753,030             | 51,898         |  |
| 2017                | 5,003,752     | 365,498        | 1,195,495           | 96,134         |  |
| 2018 (through July) | 1,509,266     | 125,971        | 119,338             | 49,833         |  |
| Total               | 11,938,353    | 1,112,666      | 2,979,688           | 236,563        |  |
| Overall Total       | 16,267,270    |                |                     |                |  |

# Table 59: LED Bulbs Supported by Connecticut Companies by Year (Source: program records)

Table 60: Connecticut LED Saturation and Program Support by Year

(Sources: on-site visits and program records)

| Brogram Voor        | LED Seturation <sup>1</sup> | Count of Program Supported Bulbs |                |                       |  |
|---------------------|-----------------------------|----------------------------------|----------------|-----------------------|--|
| Program rear        | LED Saturation              | Upstream LEDs                    | Direct Install | Total                 |  |
| 2013                | 2%                          | 421,584                          | 12,901         | 434,485               |  |
| 2014                | n/a                         | 1,496,096                        | 137,777        | 1,633,873             |  |
| 2015                | n/a                         | 2,103,011                        | 226,145        | 2,329,156             |  |
| 2016                | n/a                         | 3,069,499                        | 334,970        | <b>334,970</b> [GR97] |  |
| 2017                | n/a                         | 6,199,247                        | 461,632        | 6,660,879             |  |
| 2018 (through July) | 26%                         | 1,628,604                        | 175,804        | 1,804,408             |  |
| Total               |                             | 14,918,041                       | 1,349,229      | 16,267,270            |  |

<sup>1</sup> Based on on-site visits conducted in April through May of 2018.

#### E.1.1 Comparison Areas

This study relied on three comparison areas (Massachusetts, New York, and Rhode Island) to benchmark the saturation values observed for Connecticut for the following reasons:

**Massachusetts.** Because Massachusetts is a neighboring program state with a similar portfolio of residential lighting programs and a history of conducting nearly annual on-site lighting inventory studies, it provided additional insights into year-to-year changes in saturation lacking in Connecticut. Note: saturation data collected in Massachusetts was collected six months before and six months after that collected in Connecticut, making direct comparisons more difficult. Therefore, the body of this report includes averages, while the appendices report findings from each individual phase.



**Rhode Island.** Neighboring state Rhode Island has a similar portfolio of residential lighting programs and the latest saturation data were collected concurrently with the most recent Connecticut effort.

**Portions of Upstate New York**<sup>55</sup>. In 2014, the Massachusetts Program Administrators chose portions of Upstate New York as a comparison area because they presented a unique opportunity to understand how the residential lighting market has responded in the absence of upstream residential lighting program support. In 2012, New York State Energy Research and Development Authority (NYSERDA) discontinued upstream support for standard spiral CFLs and nearly all upstream incentives (including LEDs) in 2014. The decision to exit the market was made by the New York Department of Public Service, operating under the hypothesis that the residential lighting market would continue to transform without further intervention from NYSERDA. Note: saturation data in New York was collected six months before and six months after that collected in Connecticut, making direct comparisons more difficult. Therefore, the main body of the report reports averages, while the appendices report findings from each individual visit.

While NYSERDA no longer offers upstream programs in Upstate New York, in the intervening years, utilities in these portions of New York have continued to provide varying levels of support for LEDs through program offerings such as direct install programs, energy efficiency kits, and online marketplaces/portals. In addition, in 2017, Con Edison began to support LEDs through traditional upstream channels in their service area (including Westchester County, which is onefifth of the total number of households included in the comparison area panel). It is our understanding that Con Edison upstream program activity was low in 2017 but has ramped up in 2018. As part of the Massachusetts RLPNC 17-9 study,<sup>56</sup> the evaluation team detected no differences in LED saturation among Westchester County households and households in other portions of the comparison area. This leads to the conclusion that the new upstream program activity has had little or no impact on saturation for the overall New York comparison area, but it must be acknowledged as a potential threat to validity for using New York as a non-program comparison area. It is important to note that, throughout this report, saturation values for Massachusetts and New York were taken directly from publicly available reports (http://maeeac.org/) and have not been adjusted or weighted to reflect demographics of Connecticut. This approach likely does not greatly impact the overall results, as according to the RLPNC 17-9 and 18-10 reports, weighting had minimal impact on saturation values, typically changing saturation values by less than 1%. Table 61 compares saturation by state by year.

<sup>&</sup>lt;sup>56</sup> NMR. "RLPNC Study 17-9 2017-2018 Residential Lighting Market Assessment Study." March 28, 2018. Accessed at: <u>http://ma-eeac.org/wordpress/wp-content/uploads/RLPNC 179 LtgMarketAssessment 28March2018 FINAL-1.pdf</u>.



<sup>&</sup>lt;sup>55</sup> Comprising Westchester County and 40-mile radiuses around the cities of Albany, Buffalo, Rochester, and Syracuse.

|                       |             | (            |                          |                          |
|-----------------------|-------------|--------------|--------------------------|--------------------------|
| Year End <sup>1</sup> | Connecticut | Rhode Island | Massachusetts            | New York                 |
| 2012                  | 2%          | 1%           | 2%                       | 1%                       |
| 2013                  | n/          | n/a          | 3%                       | n/a                      |
| 2014                  | n/a         | n/a          | 6%                       | 3%                       |
| 2015                  | n/a         | n/a          | 12%                      | 7%                       |
| 2016                  | n/a         | n/a          | 18%                      | 10%                      |
| 2017                  | n/a         | n/a          | 27%                      | 14%                      |
| Mid-2018              | 26%         | 33%          | n/a<br>(31% simple avg.) | n/a<br>(18% simple avg.) |
| 2018                  | n/a         | n/a          | 34%                      | 22%                      |

#### Table 61: Saturation (Year End) by State

(Source: on-site visits)

<sup>1</sup> Massachusetts and New York data collection occurred in two phases: first at the end of 2017 (October through December) and then at the end of 2018 (October through December). Connecticut and Rhode Island data collection occurred roughly mid-way between (April and May 2018). For ease of comparison, we provide the simple average of 2017 and 2018 saturation in Massachusetts and Rhode Island.

#### E.1.2 Program Support Comparison

A relative level of program support can be measured by dividing total supported upstream LEDs by the number of households in each program state (Connecticut, Massachusetts, and Rhode Island).<sup>57</sup> [GR98]As Table 62 shows, the general level of upstream LED program support in the three states followed a similar pattern with increasing levels of support between 2013 and 2017; however, over the full period, Connecticut supported a larger number of average LEDs per household than Rhode Island and Massachusetts (9.9 versus 8.9 and 8.2). While there were differences in LEDs supported on a per household basis in any given year, the overall level of support appears generally comparable with the average bulbs supported per household in all three areas, exceeding eight over the five years compared. Note: some differences between the areas may likely be attributed to reporting periods, program and funding cycles, and various program record intricacies between the three states. This analysis is meant as a high-level comparison of general program activity between the areas.

<sup>&</sup>lt;sup>57</sup> Connecticut site visits were restricted to Eversource and UI households. As such, the relative level of program support and potential for lamps leaving the service territory should be acknowledged.



| Program Voar | Average Bulbs per Household |              |               |  |  |  |
|--------------|-----------------------------|--------------|---------------|--|--|--|
|              | Connecticut                 | Rhode Island | Massachusetts |  |  |  |
| 2013         | 0.3                         | 0.2          | 0.4           |  |  |  |
| 2014         | 1.1                         | 0.7          | 0.7           |  |  |  |
| 2015         | 1.6                         | 1.5          | 1.1           |  |  |  |
| 2016         | 2.3                         | 2.6          | 1.7           |  |  |  |
| 2017         | 4.6                         | 3.9          | 4.3           |  |  |  |
| Total        | 9.9                         | 8.9          | 8.2           |  |  |  |

#### Table 62: Upstream LED Support per Household by Year and State

(Source: program records)

#### E.1.3 Annual Saturation Interpolation

Since Connecticut did not conduct regular saturation studies, it was necessary to determine a way to fill-in missing years to support analysis. Given the nearly annual studies conducted in Massachusetts, a state with similar program support, we sought to leverage data to help interpolate missing values for Connecticut. Table 63 provides saturation by year and area, using observed saturation percentage change in Massachusetts as a proxy for years not observed in Connecticut, interpolated values for mid-2018 for Massachusetts and New York, and a value for saturation in New York for 2013 (based on straight line interpolation).

#### Table 63: LED Saturation by State and Year (Filled In)

(Source: on-site visits)

|          | Saturation (Year Ending) |              |                  |                         |  |  |
|----------|--------------------------|--------------|------------------|-------------------------|--|--|
| Year End | Connecticut              | Rhode Island | Massachusetts    | New York                |  |  |
| 2012     | 2%                       | 1%           | 2%               | 1%                      |  |  |
| 2013     | 2%                       | 3%           | 3%               | 2%                      |  |  |
| 2014     | 5%                       | 6%           | 6%               | 3%                      |  |  |
| 2015     | 9%                       | 12%          | 12%              | 7%                      |  |  |
| 2016     | 14%                      | 18%          | 18%              | 10%                     |  |  |
| 2017     | 20%                      | 27%          | 27%              | 14%                     |  |  |
| Mid-2018 | 26%                      | 33%          | 31%              | 18%                     |  |  |
| 2018     | n/a                      | n/a          | <mark>34%</mark> | 22% <mark>[GR99]</mark> |  |  |



#### E.1.5 Annual Stored LED Values

LED storage rates increased in both Massachusetts and New York between 2012 and 2017, with higher levels of storage in Massachusetts compared to New York. Unfortunately, the growth is not uniform and does not appear to follow a general market adoption curve. This is perhaps not surprising given the nature of lamp storage. Most customers only purchase new lamps when an existing lamp needs replacing. <sup>58</sup> When purchasing LEDs, customers were increasingly purchasing multipacks, <sup>59</sup> and reserving extra LEDs to replace future burnouts. LEDs may remain in storage for several years before being installed. This can lead to stored lamps increasing/decreasing on a per home basis at any given point in time. The evaluation team speculates that increases in stored LEDs were driven in part by retailers increasingly providing incentives for these larger multipacks. Based on this, stored LEDs will likely increase in the near-term and then decrease over time. Therefore, the number of LEDs found in storage in Connecticut in May 2018 is likely a close approximation for the number one would expect to find in Massachusetts at a comparable time (but this is more of a leap of faith without any reliable way to predict storage behavior) (Table 64).

|          | (Court                   |               |          |  |  |
|----------|--------------------------|---------------|----------|--|--|
|          | Saturation (Year Ending) |               |          |  |  |
| Year End | Connecticut              | Massachusetts | New York |  |  |
| 2012     | 0.1                      | 0.1           | 0.1      |  |  |
| 2013     | n/a                      | 0.3           | n/a      |  |  |
| 2014     | n/a                      | 0.3           | 0.4      |  |  |
| 2015     | n/a                      | 0.9           | 0.4      |  |  |
| 2016     | n/a                      | 1.6           | 1.0      |  |  |
| 2017     | n/a                      | 2.3           | 1.5      |  |  |
| Mid-2018 | 2.1                      | n/a           | n/a      |  |  |

#### Table 64: Average LEDs in Storage by State and Year

(Source: on-site visits)

#### E.2 NET-TO-GROSS CALCULATIONS

NTG calculations rely on annual-observed saturation percent change in Massachusetts as a proxy for percent change in LED saturation in Connecticut.<sup>60</sup> This section explores historical NTG values using interpolated inputs and then suggests an approach for estimating prospective NTG values in Connecticut. [GR100] The reliance on interpolated inputs should be kept in mind when interpreting the NTG estimates.

<sup>&</sup>lt;sup>60</sup> See the interpolated saturation estimates in <u>Table 63</u><del>Table 58</del>.



<sup>&</sup>lt;sup>58</sup> MA RLPNC 17-9 Lighting Market Assessment

<sup>&</sup>lt;sup>59</sup> MA RLPNC 17-12 Lighting Decision Making

#### E.2.1 Market Gains

As shown in Table 63, the change in LED saturation can be estimated for Connecticut and New York (counterfactual or baseline) for each year 2013 – 2017, for 2018 through May, and for the entire period, 2013 through May 2018.

To calculate net impacts, a baseline (or counterfactual) scenario was first established. In this case, the counterfactual is what would have happened if the upstream program had not existed – in other words, what the lighting market in Connecticut would have done in the absence of the program. This study used data collected in the New York comparison area (an area with no upstream program) to represent the counterfactual.

Based on changes in saturation in Connecticut and the New York comparison area, Table 65 provides estimated separate market-level LED gains based on the assumed population of Connecticut (1,301,670 households (ACS)) and the average number of sockets in Connecticut households 46 sockets per home (% Saturation Gain \* 1,301,670 households \* 46 Sockets).<sup>61</sup> The average number of stored LEDs was not available for Connecticut before 2018, so the team used the Massachusetts average number of stored bulbs (as they both had an active upstream LED lighting program before 2018). The table below shows these results and includes NMR's estimate of installed and stored LEDs had the program not been in place (counterfactual).

|                    | (Source. Table 63-table 63 and Table 64-table 64) |                          |                        |                  |      |                   |                        |                    |
|--------------------|---------------------------------------------------|--------------------------|------------------------|------------------|------|-------------------|------------------------|--------------------|
|                    |                                                   | Connecticut              | LEDs Gai               | ned <sup>1</sup> | С    | ounterfactua      | I * LEDs Ga            | ained <sup>2</sup> |
| Program<br>Year    | Sat.                                              | installed<br>LEDs[GR102] | Avg.<br>Stored<br>LEDs | Stored<br>LEDs   | Sat. | Installed<br>LEDs | Avg.<br>Stored<br>LEDs | Stored<br>LEDs     |
| 2013               | 1%                                                | 119,754                  | 0.3                    | 123,072          | 1%   | 196,915           | 0.25                   | 41,024             |
| 2014               | 2%                                                | 1,796,305                | 0.3                    | 123,072          | 1%   | 196,915           | 0.4                    | 102,560            |
| 2015               | 5%                                                | 2,395,073                | 0.9                    | 369,216          | 4%   | 787,661           | 0.4                    | 164,096            |
| 2016               | 5%                                                | 2,993,841                | 1.6                    | 656,384          | 3%   | 590,746           | 1.0                    | 164,096            |
| 2017               | 7%                                                | 3,592,609                | 2.3                    | 943,552          | 4%   | 787,661           | 1.5                    | 410,240            |
| 2018<br>(YTD)      | 5%                                                | 2,993,841                | 2.1                    | 1,107,648        | 4%   | 787,661           | 1.8                    | 615,360            |
| Total <sup>3</sup> | 24%                                               | 13,891,422               | 1.25                   | 984,576          | 17%  | 3,347,558         | 1.4                    | 574,336            |

#### Table 65: Connecticut Annual LED Market Gains (Source: Table 63Table 63 and Table 64Table 64)

<sup>1</sup> Values shaded in gray are interpolated based on observed values from Massachusetts.

<sup>2</sup> Values shaded in gray are interpolated.

<sup>3</sup> Total stored LEDs equal to the difference between 2013 and 2018.

<sup>&</sup>lt;sup>61</sup> LED gain is highly subject to assumptions regarding number of households and sockets. While the values are based on the best available data (Census & on-site saturation values), this is a potential threat to validity which bears enumerating.



#### E.2.2 Net-to-Gross Estimates

The study produced estimates of annual NTG ratios as well as an overall ratio for 2013 to 2018. As mentioned above, the need to interpolate inputs such as installed and stores bulbs for both Connecticut and the counterfactual (New York) conditions leads to considerable uncertainty in the validity of these estimates. Therefore, we focus the discussion on the overall estimates rather than the annual ones, although they were estimated similarly.

Net LED gain was calculated by subtracting gain in New York from gain in Connecticut. For example, to calculate the full period net LEDs, the LED gain in Connecticut from 2013 to 2018 (13,891,422) was subtracted by counterfactual LEDs gains (3,347,558) resulting in a net gain of 10,543,864 (as shown in the last row of Table 66). The same was done for stored LEDs (2018: 984,576 – 574,336 = 410,240). Based on these values, upstream NTG estimates were calculated by dividing net LEDs gained by the number of LEDs supported through the Connecticut upstream program (14,919,871). NTG values were 71% without stored LEDs and 73% with stored LEDs (Table 66).<sup>62</sup> With the exception of 2013 (when New York supported only LEDs, while Connecticut supported mostly CFLs and some LEDs), the year-by-year estimates at first appear to follow an expected pattern of declining NTG values, however after decreasing between 2014 and 2017, the 2018 estimate increases to over 100%. The fluctuation in annual values could be attributed to lags in reporting program support and the speculative approach to interpolating annual saturation and storage data. Again, it should be stressed that these inconsistencies may imply that this analytical approach is questionable, and these estimates should be interpreted with caution.[GR103]

|                     | Connecticut<br>vs. Coun | LEDs Gained | Connecticut   | Upstream<br>NTG     | Upstream<br>NTG        |
|---------------------|-------------------------|-------------|---------------|---------------------|------------------------|
| Program Year        | Installed<br>LEDs       | Stored LEDs | Upstream LEDs | (Installed<br>Only) | (Including<br>Storage) |
| 2013                | -77,061                 | 82,048      | 423,384       | 0%                  | 1%                     |
| 2014                | 1,599,389               | 20,512      | 1,496,126     | 107%                | 108%                   |
| 2015                | 1,607,412               | 205,120     | 2,103,011     | 76%                 | 86%                    |
| 2016                | 2,403,095               | 492,288     | 3,069,499     | 78%                 | 94%                    |
| 2017                | 2,804,948               | 533,312     | 6,199,247     | 45%                 | 54%                    |
| 2018 (through July) | 2,206,180               | 492,288     | 1,628,604     | 135%                | 166%                   |
| Total               | 10,543,864              | 410,240     | 14,919,871    | 71%                 | 73%                    |

#### Table 66: Connecticut LED Upstream Program Net-to-Gross<sup>1</sup>

<sup>1</sup> Year-by-year NTG ratios are estimates based on interpolated saturation values and actual program records of LEDs supported.

<sup>2</sup> We include 2013 to capture the full period, despite the fact that New York had more LEDs installed in that year than Connecticut. New York was actually a program state in 2013. NYSERDA supported LEDs but not CFLs during that year. In contrast, while Connecticut supported just over 400,000 LEDs, it supported over two million CFLs. The price of incented CFLs was almost certainly lower than the price of incented LEDs in Connecticut in 2013, leading consumers to opt for CFLs over LEDs at that time.

<sup>&</sup>lt;sup>62</sup> No adjustments were made for direct-install program activity as utilities in New York also engage in direct-install program activity.



### **Appendix F Program Participation and Attitudes**

This section profiles respondents' participation statuses and summarizes web-survey responses about Energize CT, energy-related actions, and attitudinal questions.

#### F.1 PROGRAM PARTICIPATION

The Companies' databases indicated that, between 2015 and 2017, 7% of Eversource electric residential customers and 6% of UI electric residential customers took part in an Energize CT program. [GR104] Response rates were slightly higher among program participants: 7% of web-survey respondents and 8% of on-site homes were program participants according to customer databases (Table 67). However, before weighting, 12% of surveyed homes had been flagged as participants; the weighting approach described in Appendix B.1 accounted for this overrepresentation.

 Table 67: Eversource and United Illuminating Program Participation

 (Source: program participation database – January 2015 through December 2017)

|                      | Percent who Participated in Energy Efficiency Programs <sup>1</sup> |                                        |                  |                                                      |                                         |  |  |
|----------------------|---------------------------------------------------------------------|----------------------------------------|------------------|------------------------------------------------------|-----------------------------------------|--|--|
| Company              | Electric<br>Customer<br>Population                                  | Web-Survey<br>Respondents <sup>3</sup> | Onsite<br>Homes³ | Web-Survey<br>Respondents <sup>3</sup><br>- Weighted | Onsite Homes <sup>3</sup><br>- Weighted |  |  |
| Eversource           | 7%                                                                  | 8%                                     | 7%               | 5%                                                   | 5%                                      |  |  |
| United Illuminating  | 6%                                                                  | 24%                                    | 31%              | 15%                                                  | 21%                                     |  |  |
| Total n <sup>2</sup> | 1,442,831                                                           | 2,426                                  | 227              |                                                      | -                                       |  |  |
| Total Participated   | 7%                                                                  | 12%                                    | 11%              | 7%                                                   | 8%                                      |  |  |

<sup>1</sup> Source: Companies' electric customer participation database.

<sup>2</sup> UI could not provide raw customer data for their population, so they provided an estimated participation rate for their population of electric customers. To estimate an overall participation rate among both service territories, we calculated a weighted average by using 70/30 Eversource/UI split.

<sup>3</sup> Verified participation based on the Companies' program records.

Sixteen percent of web-survey respondents self-reported or confirmed they had participated in one of the Companies energy-efficiency programs at some point in the past two years. The web survey asked those who had not reported participating in Home Energy Solutions (HES) or HES-Income Eligible (IE) programs about their familiarity with the home energy assessment offered by the Companies. Results, summarized in Table 68, demonstrate the following key findings:



- Nonparticipants were not overwhelmingly familiar with the home energy assessment program. When asked to rate their familiarity on a scale of 1 to 5, where 1 is *not at all familiar* and 5 is *extremely familiar*, they rated their familiarity 2.5, on average.<sup>63</sup>
- Not shown, participants who said they had not participated but program records indicated they had – provided a statistically significantly higher rating (3.2) at the 90% confidence level than their counterparts than those who were not flagged as participants (2.5).
- Nearly one-sixth (13%) reported that they had received a home energy assessment. While less than one-tenth (6%) reported participating in a rebate program.

| Survey Question                                                          | Single-family,<br>1-4 units | Multifamily,<br>5+ units | Overall   |
|--------------------------------------------------------------------------|-----------------------------|--------------------------|-----------|
| Confirmed or Self-Reported Participation                                 | (n=1,749)                   | (n=677)                  | (n=2,426) |
| Home energy assessment                                                   | 15%                         | 5%                       | 13%       |
| Rebate program                                                           | 7%                          | 1%                       | 6%        |
| Either                                                                   | 18%                         | 6%                       | 16%       |
| Familiarity with HES/HES-IE Program (1 to 5 scale) among nonparticipants | (n=1,491)                   | (n=641)                  | (n=2,132) |
| Average rating                                                           | 2.6                         | 2.2                      | 2.5       |

# Table 68: Program Familiarity and Participation (Source: web-survey)

The web survey also asked both participants and nonparticipants about home improvements they made (both with or without a rebate) in the past two years, any home improvements they have plans to make in the coming year, and their familiarity with and use of utility and Energize CT finance programs. Their responses, shown in Table 69 and Table 70 indicate the following key findings:

- Nearly two-thirds (64%) of respondents reported making some type of energy upgrade in the past two years and roughly the same share (65%) had no plans to do so in the next two years.
- Over one-half (54%) of respondents reported upgrading the lighting in their home in the past two years (?), either to LED or other energy efficiency lighting, and 12% reported having plans to do so in the next year. Over one-quarter (28%) reported upgrading appliances, windows, or doors.
- One-half (51%) of those who made an improvement in the past two years reported receiving a rebate towards the upgrade and/or product replacement. Likely less aware of

<sup>&</sup>lt;sup>63</sup> Instead of referring to it as Home Energy Solutions or Home Energy Solutions - Income Eligible Program, the web survey defined the home energy assessments as follows: "The Connecticut utility companies, as part of Energize CT, offer a program called Home Energy Solutions. This program involves technicians visiting customers' homes, evaluating their homes' energy-efficiency, providing the customers with information about ways to save energy, and possibly installing some energy saving products such as light bulbs or weather-stripping materials."



program participation due to tenure, only one-third (32%) of multifamily customers reported receiving a rebate.

- Respondents were very unfamiliar with <u>rebate and</u> finance programs available through Energize CT and the Companies. When asked to rate their familiarity with utility rebates, on a scale of 1 to 5, where 1 is *not at all familiar* and 5 is *extremely familiar*, they rated their familiarity 1.7, on average. This question excluded renters that indicated they did not have any involvement with paying for home improvements.
- The majority of those who made upgrades did not use rebates or financing (78%[GR105]). Those who did, used their credit card(s) (15%); roughly three-fifths (59%) reported paying off the balance immediately.

| Survey Question                                        | Single-family,<br>1-4 units | Multifamily,<br>5+ units | Overall   |
|--------------------------------------------------------|-----------------------------|--------------------------|-----------|
| Home Improvements in Past Two Years <sup>1</sup>       | (n=1,749)                   | (n=677)                  | (n=2,426) |
| Upgraded lighting (LED or high efficiency)             | 58%                         | 32%                      | 54%       |
| Upgraded appliances, windows, or doors                 | 30%                         | 14%                      | 28%       |
| Sealing, insulation, or weatherization improvements    | 23%                         | 9%                       | 21%       |
| Replaced roof or siding                                | 15%                         | 6%                       | 14%       |
| Home energy audit (not through Energize CT or utility) | 1%                          | 2%                       | 2%        |
| Other                                                  | <1%                         | <1%                      | <1%       |
| None                                                   | 31%                         | 58%                      | 36%       |
| Don't know                                             | <1%                         | 3%                       | <1%       |
| Received a Rebate for Improvements                     | (n=312)                     | (n=44)                   | (n=356)   |
| Yes                                                    | 52%                         | 32%                      | 51%       |
| No                                                     | 48%                         | 68%                      | 49%       |
| Planned Improvements (within next year) <sup>1</sup>   | (n=1,749)                   | (n=677)                  | (n=2,426) |
| Upgrade appliances, windows, or doors                  | 17%                         | 6%                       | 15%       |
| Sealing, insulation, or weatherization improvements    | 16%                         | 3%                       | 14%       |
| Upgrade lighting (LED or high efficiency)              | 12%                         | 10%                      | 12%       |
| Replace heating, cooling, or water heater              | 9%                          | 4%                       | 8%        |
| Home energy audit (not through Energize CT or utility) | 6%                          | 3%                       | 5%        |
| Replace roof or siding                                 | 4%                          | 0.7%                     | 3%        |
| Other                                                  | <1%                         | <1%                      | <1%       |
| None                                                   | 63%                         | 77%                      | 65%       |
| Don't know                                             | <1%                         | 3%                       | 1%        |

#### **Table 69: Planned and Recent Home Improvements**

(Source: web-survey)

<sup>1</sup> Percentages do not sum to 100% because customers could select multiple responses.



# Table 70: Familiarity with Reabte and Finance Programs and Payment for Renovations

| (Source: | web-survey) |
|----------|-------------|
|----------|-------------|

| Survey Question                                                 | Single-family,<br>1-4 units | Multifamily, 5+<br>units | Overall   |
|-----------------------------------------------------------------|-----------------------------|--------------------------|-----------|
| Familiarity with Finance Program (average rating; 1 to 5 scale) | (n=1,464)                   | (n=190)                  | (n=1,654) |
| Rebates from utilities                                          | 1.7                         | 1.7                      | 1.7       |
| On-bill financing from utilities                                | 1.5                         | 1.5                      | 1.5       |
| Zero-percent financing                                          | 1.4                         | 1.4                      | 1.4       |
| Other financing opportunities                                   | 1.4                         | 1.5                      | 1.4       |
| Use of Finance Program <sup>1</sup>                             | (n=704)                     | (n=62)                   | (n=766)   |
| No rebates or financing                                         | 78%                         | 80%                      | 78%       |
| Credit cards                                                    | 15%                         | 11%                      | 15%       |
| Financing offered by contractor                                 | 2%                          | -                        | 2%        |
| Home equity or other bank loan                                  | 2%                          | -                        | 2%        |
| Zero percent payment plan                                       | 1%                          | 3%                       | 2%        |
| Other rebate or tax credit                                      | 1%                          | 6%                       | 1%        |
| Residential Energy Efficiency Financing                         | 1%                          | -                        | 1%        |
| Energize CT heating loan                                        | 1%                          | -                        | 1%        |
| Smart-E loan                                                    | 1%                          | -                        | 1%        |
| On-bill financing from utilities                                | <1%                         | -                        | <1%       |
| Cozy Home Loan                                                  | -                           | -                        | -         |

<sup>1</sup> Percentages do not sum to 100% due to multiple responses.



#### F.3 AWARENESS AND ATTITUDES ON ENVIRONMENTAL ISSUES

One-half of the web-survey sample were randomly selected to answer questions about their attitude towards global warming, effects of climate change, and identification and understanding of global energy consumption as it relates to environmental issues.

Two-thirds (67%) indicated they understand the issues involved with global warming either fairly or very well (Table 71). Almost three-quarters (72%) believed global warming effects have already began.

| Survey Question                                                                       | Single-family,<br>1-4 units | Multifamily, 5+<br>units | Overall   |
|---------------------------------------------------------------------------------------|-----------------------------|--------------------------|-----------|
| How well do you understand global warming?                                            | (n=891)                     | (n=355)                  | (n=1,246) |
| Not at all                                                                            | 4%                          | 2%                       | 3%        |
| Not very well                                                                         | 12%                         | 11%                      | 12%       |
| No opinion                                                                            | 18%                         | 17%                      | 17%       |
| Fairly well                                                                           | 46%                         | 51%                      | 46%       |
| Very well                                                                             | 21%                         | 19%                      | 21%       |
| Which statement reflects your view of when the effects of global warming will happen? | (n=891)                     | (n=355)                  | (n=1,246) |
| They have already begun to happen                                                     | 72%                         | 73%                      | 72%       |
| They will start happening within a few years                                          | 1%                          | 0.5%                     | 1%        |
| They will start happening within your lifetime                                        | 2%                          | 5%                       | 3%        |
| They will not happen within your lifetime, but they will affect future generations    | 2%                          | 1%                       | 2%        |
| They will never happen                                                                | 5%                          | 3%                       | 4%        |
| Don't know                                                                            | 18%                         | 17%                      | 17%       |

#### Table 71: Familiarity with Global Warming

(Source: web-survey)



As shown in Table 72 respondents most often considered themselves either a *moderate environmentalist* (45%) or *not an environmentalist* at all (32%). When asked about their level of activity in environmental movements, most frequently they thought of themselves as *sympathetic towards the movement, but not active* (42%).

#### Table 72: Environmentalist and Attitudes Towards Environmental Movement (Source: web-survey)

| Survey Question                                     | Single-family,<br>1-4 units | Multifamily, 5+<br>units | Overall   |
|-----------------------------------------------------|-----------------------------|--------------------------|-----------|
| Do you consider yourself an environmentalist?       | (n=891)                     | (n=355)                  | (n=1,246) |
| Yes, strong environmentalist                        | 9%                          | 12%                      | 9%        |
| Yes, moderate environmentalist                      | 46%                         | 38%                      | 45%       |
| No, not an environmentalist                         | 32%                         | 32%                      | 32%       |
| Don't know                                          | 13%                         | 18%                      | 13%       |
| Do you think of yourself as                         | (n=891)                     | (n=355)                  | (n=1,246) |
| An active participant in the environmental movement | 23%                         | 19%                      | 23%       |
| Sympathetic towards the movement, but not active    | 41%                         | 45%                      | 42%       |
| Neutral                                             | 19%                         | 19%                      | 19%       |
| Unsympathetic towards the environmental movement    | 3%                          | 2%                       | 3%        |
| No opinion                                          | 9%                          | 10%                      | 9%        |
| Don't know                                          | 5%                          | 5%                       | 5%        |

